These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 21085627)

  • 21. Transcriptional and structural impact of TATA-initiation site spacing in mammalian core promoters.
    Ponjavic J; Lenhard B; Kai C; Kawai J; Carninci P; Hayashizaki Y; Sandelin A
    Genome Biol; 2006; 7(8):R78. PubMed ID: 16916456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alternative transcription start sites contribute to acute-stress-induced transcriptome response in human skeletal muscle.
    Makhnovskii PA; Gusev OA; Bokov RO; Gazizova GR; Vepkhvadze TF; Lysenko EA; Vinogradova OL; Kolpakov FA; Popov DV
    Hum Genomics; 2022 Jul; 16(1):24. PubMed ID: 35869513
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Transcriptional start site analysis based on genetic fragment analysis system: from prediction to data evaluation].
    Li Z; Zhang W; Liu Y; Qu S; Wang Y; Zhu L; Li Y
    Wei Sheng Wu Xue Bao; 2017 Feb; 57(2):254-63. PubMed ID: 29750488
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An improved method for the highly specific detection of transcription start sites.
    Seki M; Kuze Y; Zhang X; Kurotani KI; Notaguchi M; Nishio H; Kudoh H; Suzaki T; Yoshida S; Sugano S; Matsushita T; Suzuki Y
    Nucleic Acids Res; 2024 Jan; 52(2):e7. PubMed ID: 37994784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Using RAMPAGE to Identify and Annotate Promoters in Insect Genomes.
    Raborn RT; Brendel VP
    Methods Mol Biol; 2019; 1858():99-116. PubMed ID: 30414114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Annotating TSSs in Multiple Cell Types Based on DNA Sequence and RNA-seq Data via DeeReCT-TSS.
    Zhou J; Zhang B; Li H; Zhou L; Li Z; Long Y; Han W; Wang M; Cui H; Li J; Chen W; Gao X
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):959-973. PubMed ID: 36528241
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TSSPlant: a new tool for prediction of plant Pol II promoters.
    Shahmuradov IA; Umarov RK; Solovyev VV
    Nucleic Acids Res; 2017 May; 45(8):e65. PubMed ID: 28082394
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of DNA sequence based structural features of promoters in transcription initiation and gene expression.
    Bansal M; Kumar A; Yella VR
    Curr Opin Struct Biol; 2014 Apr; 25():77-85. PubMed ID: 24503515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TE-TSS: an integrated data resource of human and mouse transposable element (TE)-derived transcription start site (TSS).
    Gu X; Wang M; Zhang XO
    Nucleic Acids Res; 2024 Jan; 52(D1):D322-D333. PubMed ID: 37956335
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contribution of bacterial promoter elements to transcription start site detection accuracy.
    Nikolic M; Stankovic T; Djordjevic M
    J Bioinform Comput Biol; 2017 Apr; 15(2):1650038. PubMed ID: 27908222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TSSer: an automated method to identify transcription start sites in prokaryotic genomes from differential RNA sequencing data.
    Jorjani H; Zavolan M
    Bioinformatics; 2014 Apr; 30(7):971-4. PubMed ID: 24371151
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Core Promoter Plasticity Between Maize Tissues and Genotypes Contrasts with Predominance of Sharp Transcription Initiation Sites.
    Mejía-Guerra MK; Li W; Galeano NF; Vidal M; Gray J; Doseff AI; Grotewold E
    Plant Cell; 2015 Dec; 27(12):3309-20. PubMed ID: 26628745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High DNA melting temperature predicts transcription start site location in human and mouse.
    Dineen DG; Wilm A; Cunningham P; Higgins DG
    Nucleic Acids Res; 2009 Dec; 37(22):7360-7. PubMed ID: 19820114
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Location dependence of the transcriptional response of a potential G-quadruplex in gene promoters under oxidative stress.
    Fleming AM; Zhu J; Ding Y; Burrows CJ
    Nucleic Acids Res; 2019 Jun; 47(10):5049-5060. PubMed ID: 30916339
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Promoter analysis and prediction in the human genome using sequence-based deep learning models.
    Umarov R; Kuwahara H; Li Y; Gao X; Solovyev V
    Bioinformatics; 2019 Aug; 35(16):2730-2737. PubMed ID: 30601980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EnsemPro: an ensemble approach to predicting transcription start sites in human genomic DNA sequences.
    Won HH; Kim MJ; Kim S; Kim JW
    Genomics; 2008 Mar; 91(3):259-66. PubMed ID: 18164178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conserved short sequences in promoter regions of human genome.
    Putta P; Mitra CK
    J Biomol Struct Dyn; 2010 Apr; 27(5):599-610. PubMed ID: 20085377
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CAGEr: precise TSS data retrieval and high-resolution promoterome mining for integrative analyses.
    Haberle V; Forrest AR; Hayashizaki Y; Carninci P; Lenhard B
    Nucleic Acids Res; 2015 Apr; 43(8):e51. PubMed ID: 25653163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low Quantity Single Strand CAGE (LQ-ssCAGE) Maps Regulatory Enhancers and Promoters.
    Takahashi H; Nishiyori-Sueki H; Ramilowski JA; Itoh M; Carninci P
    Methods Mol Biol; 2021; 2351():67-90. PubMed ID: 34382184
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global identification of transcription start sites in the genome of Apis mellifera using 5'LongSAGE.
    Zheng H; Sun L; Peng W; Shen Y; Wang Y; Xu B; Gu W; Chen S; Huang Z; Wang S
    J Exp Zool B Mol Dev Evol; 2011 Nov; 316(7):500-14. PubMed ID: 21695780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.