These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 21085680)
41. SpbR overproduction reveals the importance of proteolytic degradation for cell pole development and chromosome segregation in Caulobacter crescentus. Wang H; Bowman GR Mol Microbiol; 2019 Jun; 111(6):1700-1714. PubMed ID: 30891828 [TBL] [Abstract][Full Text] [Related]
42. Bacterial intermediate filaments: in vivo assembly, organization, and dynamics of crescentin. Charbon G; Cabeen MT; Jacobs-Wagner C Genes Dev; 2009 May; 23(9):1131-44. PubMed ID: 19417107 [TBL] [Abstract][Full Text] [Related]
43. Caulobacter crescentus: model system extraordinaire. Govers SK; Jacobs-Wagner C Curr Biol; 2020 Oct; 30(19):R1151-R1158. PubMed ID: 33022259 [TBL] [Abstract][Full Text] [Related]
44. Bacteria spring a surprise. Srinivasan R; Balasubramanian MK Elife; 2014 Jun; 3():e03435. PubMed ID: 24963144 [TBL] [Abstract][Full Text] [Related]
45. Grasping at origins. Ramamurthi KS; Losick R Cell; 2008 Sep; 134(6):916-8. PubMed ID: 18805084 [TBL] [Abstract][Full Text] [Related]
46. The bifunctional FtsK protein mediates chromosome partitioning and cell division in Caulobacter. Wang SC; West L; Shapiro L J Bacteriol; 2006 Feb; 188(4):1497-508. PubMed ID: 16452433 [TBL] [Abstract][Full Text] [Related]
47. In vivo Architecture of the Polar Organizing Protein Z (PopZ) Meshwork in the Alphaproteobacteria Magnetospirillum gryphiswaldense and Caulobacter crescentus. Toro-Nahuelpan M; Plitzko JM; Schüler D; Pfeiffer D J Mol Biol; 2022 Mar; 434(5):167423. PubMed ID: 34971672 [TBL] [Abstract][Full Text] [Related]
48. High-throughput screening of bacterial protein localization. Werner JN; Gitai Z Methods Enzymol; 2010; 471():185-204. PubMed ID: 20946849 [TBL] [Abstract][Full Text] [Related]
49. Advantages and mechanisms of polarity and cell shape determination in Caulobacter crescentus. Lawler ML; Brun YV Curr Opin Microbiol; 2007 Dec; 10(6):630-7. PubMed ID: 17997127 [TBL] [Abstract][Full Text] [Related]
50. Protein localization and cell fate in bacteria. Shapiro L; Losick R Science; 1997 May; 276(5313):712-8. PubMed ID: 9115191 [TBL] [Abstract][Full Text] [Related]
51. Dynamic chromosome organization and protein localization coordinate the regulatory circuitry that drives the bacterial cell cycle. Goley ED; Toro E; McAdams HH; Shapiro L Cold Spring Harb Symp Quant Biol; 2009; 74():55-64. PubMed ID: 19687139 [TBL] [Abstract][Full Text] [Related]
52. How do bacteria localize proteins to the cell pole? Laloux G; Jacobs-Wagner C J Cell Sci; 2014 Jan; 127(Pt 1):11-9. PubMed ID: 24345373 [TBL] [Abstract][Full Text] [Related]
53. High-resolution 3D models of Caulobacter crescentus chromosome reveal genome structural variability and organization. Yildirim A; Feig M Nucleic Acids Res; 2018 May; 46(8):3937-3952. PubMed ID: 29529244 [TBL] [Abstract][Full Text] [Related]
54. Identification of the PhoB Regulon and Role of PhoU in the Phosphate Starvation Response of Caulobacter crescentus. Lubin EA; Henry JT; Fiebig A; Crosson S; Laub MT J Bacteriol; 2016 Jan; 198(1):187-200. PubMed ID: 26483520 [TBL] [Abstract][Full Text] [Related]
55. Polar localization of the CckA histidine kinase and cell cycle periodicity of the essential master regulator CtrA in Caulobacter crescentus. Angelastro PS; Sliusarenko O; Jacobs-Wagner C J Bacteriol; 2010 Jan; 192(2):539-52. PubMed ID: 19897656 [TBL] [Abstract][Full Text] [Related]