These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21085680)

  • 81. Non-equilibrium polar localization of proteins in bacterial cells.
    Saberi S; Emberly E
    PLoS One; 2013; 8(5):e64075. PubMed ID: 23700458
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Loss of Bacterial Cell Pole Stabilization in Caulobacter crescentus Sensitizes to Outer Membrane Stress and Peptidoglycan-Directed Antibiotics.
    Vallet SU; Hansen LH; Bistrup FC; Laursen SA; Chapalay JB; Chambon M; Turcatti G; Viollier PH; Kirkpatrick CL
    mBio; 2020 May; 11(3):. PubMed ID: 32371598
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Regulation of the replication initiator DnaA in Caulobacter crescentus.
    Felletti M; Omnus DJ; Jonas K
    Biochim Biophys Acta Gene Regul Mech; 2019 Jul; 1862(7):697-705. PubMed ID: 29382570
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A genetic oscillator and the regulation of cell cycle progression in Caulobacter crescentus.
    Crosson S; McAdams H; Shapiro L
    Cell Cycle; 2004 Oct; 3(10):1252-4. PubMed ID: 15467452
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The role of polar localization in the function of an essential Caulobacter crescentus tyrosine kinase.
    Sciochetti SA; Ohta N; Newton A
    Mol Microbiol; 2005 Jun; 56(6):1467-80. PubMed ID: 15916599
    [TBL] [Abstract][Full Text] [Related]  

  • 86. A Bacterial Chromosome Structuring Protein Binds Overtwisted DNA to Stimulate Type II Topoisomerases and Enable DNA Replication.
    Guo MS; Haakonsen DL; Zeng W; Schumacher MA; Laub MT
    Cell; 2018 Oct; 175(2):583-597.e23. PubMed ID: 30220456
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A moving DNA replication factory in Caulobacter crescentus.
    Jensen RB; Wang SC; Shapiro L
    EMBO J; 2001 Sep; 20(17):4952-63. PubMed ID: 11532959
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Identification, characterization, and chromosomal organization of cell division cycle genes in Caulobacter crescentus.
    Ohta N; Ninfa AJ; Allaire A; Kulick L; Newton A
    J Bacteriol; 1997 Apr; 179(7):2169-80. PubMed ID: 9079901
    [TBL] [Abstract][Full Text] [Related]  

  • 89. A geometrical model for DNA organization in bacteria.
    Buenemann M; Lenz P
    PLoS One; 2010 Nov; 5(11):e13806. PubMed ID: 21085464
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Exploring protein superstructures and dynamics in live bacterial cells using single-molecule and superresolution imaging.
    Biteen JS; Shapiro L; Moerner WE
    Methods Mol Biol; 2011; 783():139-58. PubMed ID: 21909887
    [TBL] [Abstract][Full Text] [Related]  

  • 91. CauloBrowser: A systems biology resource for Caulobacter crescentus.
    Lasker K; Schrader JM; Men Y; Marshik T; Dill DL; McAdams HH; Shapiro L
    Nucleic Acids Res; 2016 Jan; 44(D1):D640-5. PubMed ID: 26476443
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Conserved response regulator CtrA and IHF binding sites in the alpha-proteobacteria Caulobacter crescentus and Rickettsia prowazekii chromosomal replication origins.
    Brassinga AK; Siam R; McSween W; Winkler H; Wood D; Marczynski GT
    J Bacteriol; 2002 Oct; 184(20):5789-99. PubMed ID: 12270838
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Cryogenic single-molecule fluorescence annotations for electron tomography reveal in situ organization of key proteins in
    Dahlberg PD; Saurabh S; Sartor AM; Wang J; Mitchell PG; Chiu W; Shapiro L; Moerner WE
    Proc Natl Acad Sci U S A; 2020 Jun; 117(25):13937-13944. PubMed ID: 32513734
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The material properties of a bacterial-derived biomolecular condensate tune biological function in natural and synthetic systems.
    Lasker K; Boeynaems S; Lam V; Scholl D; Stainton E; Briner A; Jacquemyn M; Daelemans D; Deniz A; Villa E; Holehouse AS; Gitler AD; Shapiro L
    Nat Commun; 2022 Sep; 13(1):5643. PubMed ID: 36163138
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Chromosome structure modeling tools and their evaluation in bacteria.
    Liu T; Qiu QT; Hua KJ; Ma BG
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38385874
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Integrative visualization of the molecular structure of a cellular microdomain.
    Goodsell DS; Lasker K
    Protein Sci; 2023 Mar; 32(3):e4577. PubMed ID: 36700303
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Localization of aggregating proteins in bacteria depends on the rate of addition.
    Scheu K; Gill R; Saberi S; Meyer P; Emberly E
    Front Microbiol; 2014; 5():418. PubMed ID: 25147551
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Phospho-signaling couples polar asymmetry and proteolysis within a membraneless microdomain in
    Ahmed YM; Bowman GR
    bioRxiv; 2023 Aug; ():. PubMed ID: 37645878
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Effects of spatial heterogeneity on bacterial genetic circuits.
    Barajas C; Del Vecchio D
    PLoS Comput Biol; 2020 Sep; 16(9):e1008159. PubMed ID: 32925923
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The compartmentalized vessel: The bacterial cell as a model for subcellular organization (a tale of two studies).
    Amster-Choder O
    Cell Logist; 2011 Mar; 1(2):77-81. PubMed ID: 21686257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.