BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 21086455)

  • 1. Bioethanol production from dedicated energy crops and residues in Arkansas, USA.
    Ge X; Burner DM; Xu J; Phillips GC; Sivakumar G
    Biotechnol J; 2011 Jan; 6(1):66-73. PubMed ID: 21086455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miscanthus as cellulosic biomass for bioethanol production.
    Lee WC; Kuan WC
    Biotechnol J; 2015 Jun; 10(6):840-54. PubMed ID: 26013948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced hydrolysis of lignocellulosic biomass: Bi-functional enzyme complexes expressed in Pichia pastoris improve bioethanol production from Miscanthus sinensis.
    Shin SK; Hyeon JE; Kim YI; Kang DH; Kim SW; Park C; Han SO
    Biotechnol J; 2015 Dec; 10(12):1912-9. PubMed ID: 26479167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lime pretreatment of sugarcane bagasse for bioethanol production.
    Rabelo SC; Maciel Filho R; Costa AC
    Appl Biochem Biotechnol; 2009 May; 153(1-3):139-50. PubMed ID: 19050835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pretreatment of reed by wet oxidation and subsequent utilization of the pretreated fibers for ethanol production.
    Szijártó N; Kádár Z; Varga E; Thomsen AB; Costa-Ferreira M; Réczey K
    Appl Biochem Biotechnol; 2009 May; 155(1-3):386-96. PubMed ID: 19214791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentation of bioenergy crops into ethanol using biological abatement for removal of inhibitors.
    Nichols NN; Dien BS; Cotta MA
    Bioresour Technol; 2010 Oct; 101(19):7545-50. PubMed ID: 20510606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production.
    Li H; Kim NJ; Jiang M; Kang JW; Chang HN
    Bioresour Technol; 2009 Jul; 100(13):3245-51. PubMed ID: 19289273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme hydrolysis and ethanol fermentation of dilute ammonia pretreated energy cane.
    Aita GA; Salvi DA; Walker MS
    Bioresour Technol; 2011 Mar; 102(6):4444-8. PubMed ID: 21247758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioethanol from lignocellulosics: Status and perspectives in Canada.
    Mabee WE; Saddler JN
    Bioresour Technol; 2010 Jul; 101(13):4806-13. PubMed ID: 20006494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C4 plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective.
    Byrt CS; Grof CP; Furbank RT
    J Integr Plant Biol; 2011 Feb; 53(2):120-35. PubMed ID: 21205189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production.
    Sindhu R; Kuttiraja M; Binod P; Janu KU; Sukumaran RK; Pandey A
    Bioresour Technol; 2011 Dec; 102(23):10915-21. PubMed ID: 22000965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of 'Biofuel'.
    Chandel AK; Singh OV
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1289-303. PubMed ID: 21181146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of ozonolysis as a pretreatment for energy grasses.
    Panneerselvam A; Sharma-Shivappa RR; Kolar P; Ranney T; Peretti S
    Bioresour Technol; 2013 Nov; 148():242-8. PubMed ID: 24050926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review.
    Alvira P; Tomás-Pejó E; Ballesteros M; Negro MJ
    Bioresour Technol; 2010 Jul; 101(13):4851-61. PubMed ID: 20042329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethanol production from sugarcane bagasse by Zymomonas mobilis using simultaneous saccharification and fermentation (SSF) process.
    dos Santos Dda S; Camelo AC; Rodrigues KC; Carlos LC; Pereira N
    Appl Biochem Biotechnol; 2010 May; 161(1-8):93-105. PubMed ID: 19876607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic engineering of energy crops: a strategy for biofuel production in China.
    Xie G; Peng L
    J Integr Plant Biol; 2011 Feb; 53(2):143-50. PubMed ID: 21205188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.
    Buaban B; Inoue H; Yano S; Tanapongpipat S; Ruanglek V; Champreda V; Pichyangkura R; Rengpipat S; Eurwilaichitr L
    J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioethanol production from steam-exploded rice husk by recombinant Escherichia coli KO11.
    Tabata T; Yoshiba Y; Takashina T; Hieda K; Shimizu N
    World J Microbiol Biotechnol; 2017 Mar; 33(3):47. PubMed ID: 28176202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: a process simulation approach.
    Quintero JA; Moncada J; Cardona CA
    Bioresour Technol; 2013 Jul; 139():300-7. PubMed ID: 23665691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plant genetic engineering to improve biomass characteristics for biofuels.
    Sticklen M
    Curr Opin Biotechnol; 2006 Jun; 17(3):315-9. PubMed ID: 16701991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.