These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21087024)

  • 1. Studies on the structure and stability of cyclic peptide based nanotubes using oligomeric approach: a computational chemistry investigation.
    Vijayaraj R; Sundar Raman S; Mahesh Kumar R; Subramanian V
    J Phys Chem B; 2010 Dec; 114(49):16574-83. PubMed ID: 21087024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and stability of cyclic peptide based nanotubes: a molecular dynamics study of the influence of amino acid composition.
    Vijayaraj R; Van Damme S; Bultinck P; Subramanian V
    Phys Chem Chem Phys; 2012 Nov; 14(43):15135-44. PubMed ID: 23041975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics and umbrella sampling study of stabilizing factors in cyclic peptide-based nanotubes.
    Vijayaraj R; Van Damme S; Bultinck P; Subramanian V
    J Phys Chem B; 2012 Aug; 116(33):9922-33. PubMed ID: 22804626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose derivatives substitution and cyclic peptide diameter effects on the stability of the self-assembled cyclic peptide nanotubes; a joint QM/MD study.
    Khavani M; Izadyar M; Housaindokht MR
    J Mol Graph Model; 2017 Jan; 71():28-39. PubMed ID: 27837688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical studies on the transport mechanism of 5-fluorouracil through cyclic peptide based nanotubes.
    Vijayaraj R; Van Damme S; Bultinck P; Subramanian V
    Phys Chem Chem Phys; 2013 Jan; 15(4):1260-70. PubMed ID: 23229174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of chloroform from a dilute solution using a cyclic peptide nanotube: A molecular dynamics study.
    Zhao X; Fan JF; Si XL; Zhang LL; Qu MN
    J Mol Graph Model; 2018 Aug; 83():74-83. PubMed ID: 29778743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A molecular dynamics investigation on transporting mechanism of glucose through a cyclic peptide nanotube.
    Joozdani FA; Taghdir M
    J Biomol Struct Dyn; 2021 Apr; 39(6):2230-2241. PubMed ID: 32249695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different transport behaviors of NH4 (+) and NH3 in transmembrane cyclic peptide nanotubes.
    Zhang M; Fan J; Xu J; Weng P; Lin H
    J Mol Model; 2016 Oct; 22(10):233. PubMed ID: 27600817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic behavior and selective adsorption of a methanol/water mixture inside a cyclic peptide nanotube.
    Si X; Fan J; Xu J; Zhao X; Zhang L; Qu M
    J Mol Model; 2018 Jun; 24(7):184. PubMed ID: 29959542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics study of a carbon nanotube binding reversible cyclic peptide.
    Chiu CC; Maher MC; Dieckmann GR; Nielsen SO
    ACS Nano; 2010 May; 4(5):2539-46. PubMed ID: 20423073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes.
    Li R; Fan J; Li H; Yan X; Yu Y
    J Chem Phys; 2015 Jul; 143(1):015101. PubMed ID: 26156492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of the diameter of cyclic peptide nanotube on its chirality discrimination.
    Farrokhpour H; Mansouri A; Rajabi AR; Najafi Chermahini A
    J Biomol Struct Dyn; 2019 Feb; 37(3):691-701. PubMed ID: 29393002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New cyclic peptide assemblies with hydrophobic cavities: the structural and thermodynamic basis of a new class of peptide nanotubes.
    Amorín M; Castedo L; Granja JR
    J Am Chem Soc; 2003 Mar; 125(10):2844-5. PubMed ID: 12617629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembling peptide nanotubes from enantiomeric pairs of cyclic peptides with alternating D and L amino acid residues.
    Rosenthal-Aizman K; Svensson G; Undén A
    J Am Chem Soc; 2004 Mar; 126(11):3372-3. PubMed ID: 15025434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability and growth mechanism of self-assembling putative antifreeze cyclic peptides.
    Brotzakis ZF; Gehre M; Voets IK; Bolhuis PG
    Phys Chem Chem Phys; 2017 Jul; 19(29):19032-19042. PubMed ID: 28702528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembling cyclic peptides: molecular dynamics studies of dimers in polar and nonpolar solvents.
    Khurana E; Nielsen SO; Ensing B; Klein ML
    J Phys Chem B; 2006 Sep; 110(38):18965-72. PubMed ID: 16986891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combined molecular dynamic and quantum mechanic study of the solvent and guest molecule effect on the stability and length of heterocyclic peptide nanotubes.
    Izadyar M; Khavani M; Housaindokht MR
    Phys Chem Chem Phys; 2015 May; 17(17):11382-91. PubMed ID: 25848975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards functional bionanomaterials based on self-assembling cyclic peptide nanotubes.
    Brea RJ; Reiriz C; Granja JR
    Chem Soc Rev; 2010 May; 39(5):1448-56. PubMed ID: 20419200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico study of amphiphilic nanotubes based on cyclic peptides in polar and non-polar solvent.
    Vijayakumar V; Vijayaraj R; Peters GH
    J Mol Model; 2016 Nov; 22(11):264. PubMed ID: 27734210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic beta-helical/beta-hairpin D,L-alpha-peptide: study of its folding properties and structure refinement using molecular dynamics.
    Meier K; van Gunsteren WF
    J Phys Chem A; 2010 Feb; 114(4):1852-9. PubMed ID: 20055405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.