BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 21087024)

  • 1. Studies on the structure and stability of cyclic peptide based nanotubes using oligomeric approach: a computational chemistry investigation.
    Vijayaraj R; Sundar Raman S; Mahesh Kumar R; Subramanian V
    J Phys Chem B; 2010 Dec; 114(49):16574-83. PubMed ID: 21087024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and stability of cyclic peptide based nanotubes: a molecular dynamics study of the influence of amino acid composition.
    Vijayaraj R; Van Damme S; Bultinck P; Subramanian V
    Phys Chem Chem Phys; 2012 Nov; 14(43):15135-44. PubMed ID: 23041975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics and umbrella sampling study of stabilizing factors in cyclic peptide-based nanotubes.
    Vijayaraj R; Van Damme S; Bultinck P; Subramanian V
    J Phys Chem B; 2012 Aug; 116(33):9922-33. PubMed ID: 22804626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glucose derivatives substitution and cyclic peptide diameter effects on the stability of the self-assembled cyclic peptide nanotubes; a joint QM/MD study.
    Khavani M; Izadyar M; Housaindokht MR
    J Mol Graph Model; 2017 Jan; 71():28-39. PubMed ID: 27837688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical studies on the transport mechanism of 5-fluorouracil through cyclic peptide based nanotubes.
    Vijayaraj R; Van Damme S; Bultinck P; Subramanian V
    Phys Chem Chem Phys; 2013 Jan; 15(4):1260-70. PubMed ID: 23229174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of chloroform from a dilute solution using a cyclic peptide nanotube: A molecular dynamics study.
    Zhao X; Fan JF; Si XL; Zhang LL; Qu MN
    J Mol Graph Model; 2018 Aug; 83():74-83. PubMed ID: 29778743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A molecular dynamics investigation on transporting mechanism of glucose through a cyclic peptide nanotube.
    Joozdani FA; Taghdir M
    J Biomol Struct Dyn; 2021 Apr; 39(6):2230-2241. PubMed ID: 32249695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different transport behaviors of NH4 (+) and NH3 in transmembrane cyclic peptide nanotubes.
    Zhang M; Fan J; Xu J; Weng P; Lin H
    J Mol Model; 2016 Oct; 22(10):233. PubMed ID: 27600817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic behavior and selective adsorption of a methanol/water mixture inside a cyclic peptide nanotube.
    Si X; Fan J; Xu J; Zhao X; Zhang L; Qu M
    J Mol Model; 2018 Jun; 24(7):184. PubMed ID: 29959542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics study of a carbon nanotube binding reversible cyclic peptide.
    Chiu CC; Maher MC; Dieckmann GR; Nielsen SO
    ACS Nano; 2010 May; 4(5):2539-46. PubMed ID: 20423073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic behaviors and transport properties of ethanol molecules in transmembrane cyclic peptide nanotubes.
    Li R; Fan J; Li H; Yan X; Yu Y
    J Chem Phys; 2015 Jul; 143(1):015101. PubMed ID: 26156492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of the diameter of cyclic peptide nanotube on its chirality discrimination.
    Farrokhpour H; Mansouri A; Rajabi AR; Najafi Chermahini A
    J Biomol Struct Dyn; 2019 Feb; 37(3):691-701. PubMed ID: 29393002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New cyclic peptide assemblies with hydrophobic cavities: the structural and thermodynamic basis of a new class of peptide nanotubes.
    Amorín M; Castedo L; Granja JR
    J Am Chem Soc; 2003 Mar; 125(10):2844-5. PubMed ID: 12617629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembling peptide nanotubes from enantiomeric pairs of cyclic peptides with alternating D and L amino acid residues.
    Rosenthal-Aizman K; Svensson G; Undén A
    J Am Chem Soc; 2004 Mar; 126(11):3372-3. PubMed ID: 15025434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability and growth mechanism of self-assembling putative antifreeze cyclic peptides.
    Brotzakis ZF; Gehre M; Voets IK; Bolhuis PG
    Phys Chem Chem Phys; 2017 Jul; 19(29):19032-19042. PubMed ID: 28702528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembling cyclic peptides: molecular dynamics studies of dimers in polar and nonpolar solvents.
    Khurana E; Nielsen SO; Ensing B; Klein ML
    J Phys Chem B; 2006 Sep; 110(38):18965-72. PubMed ID: 16986891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combined molecular dynamic and quantum mechanic study of the solvent and guest molecule effect on the stability and length of heterocyclic peptide nanotubes.
    Izadyar M; Khavani M; Housaindokht MR
    Phys Chem Chem Phys; 2015 May; 17(17):11382-91. PubMed ID: 25848975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards functional bionanomaterials based on self-assembling cyclic peptide nanotubes.
    Brea RJ; Reiriz C; Granja JR
    Chem Soc Rev; 2010 May; 39(5):1448-56. PubMed ID: 20419200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico study of amphiphilic nanotubes based on cyclic peptides in polar and non-polar solvent.
    Vijayakumar V; Vijayaraj R; Peters GH
    J Mol Model; 2016 Nov; 22(11):264. PubMed ID: 27734210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic beta-helical/beta-hairpin D,L-alpha-peptide: study of its folding properties and structure refinement using molecular dynamics.
    Meier K; van Gunsteren WF
    J Phys Chem A; 2010 Feb; 114(4):1852-9. PubMed ID: 20055405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.