These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 2108714)

  • 21. Site-directed mutants, at position 166, of RTEM-1 beta-lactamase that form a stable acyl-enzyme intermediate with penicillin.
    Adachi H; Ohta T; Matsuzawa H
    J Biol Chem; 1991 Feb; 266(5):3186-91. PubMed ID: 1993691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleophilic re-activation of the PC1 beta-lactamase of Staphylococcus aureus and of the DD-peptidase of Streptomyces R61 after their inactivation by cephalosporins and cephamycins.
    Faraci WS; Pratt RF
    Biochem J; 1987 Sep; 246(3):651-8. PubMed ID: 3500712
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Papain-catalyzed reactions at subzero temperatures.
    Fink AL; Angelides KJ
    Biochemistry; 1976 Nov; 15(24):5287-93. PubMed ID: 999807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative analysis of the stabilization by substrate of Staphylococcus aureus PC1 beta-lactamase.
    Lejeune A; Vanhove M; Lamotte-Brasseur J; Pain RH; Frère JM; Matagne A
    Chem Biol; 2001 Aug; 8(8):831-42. PubMed ID: 11514231
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The acyl-enzyme mechanism of beta-lactamase action. The evidence for class C Beta-lactamases.
    Knott-Hunziker V; Petursson S; Waley SG; Jaurin B; Grundström T
    Biochem J; 1982 Nov; 207(2):315-22. PubMed ID: 6818947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure, Function of Serine and Metallo-β-lactamases and their Inhibitors.
    Salahuddin P; Kumar A; Khan AU
    Curr Protein Pept Sci; 2018; 19(2):130-144. PubMed ID: 28745223
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deacylation Mechanism and Kinetics of Acyl-Enzyme Complex of Class C β-Lactamase and Cephalothin.
    Tripathi R; Nair NN
    J Phys Chem B; 2016 Mar; 120(10):2681-90. PubMed ID: 26918257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cryoenzymology of human plasmin catalysis: comparison of cryosolvents and reactions with nitrophenyl ester and anilide substrates.
    Coll RJ; Fink AL
    Cryobiology; 1987 Aug; 24(4):332-44. PubMed ID: 2957172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Different transition-state structures for the reactions of beta-lactams and analogous beta-sultams with serine beta-lactamases.
    Tsang WY; Ahmed N; Hinchliffe PS; Wood JM; Harding LP; Laws AP; Page MI
    J Am Chem Soc; 2005 Dec; 127(49):17556-64. PubMed ID: 16332108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetics of turnover of cefotaxime by the Enterobacter cloacae P99 and GCl beta-lactamases: two free enzyme forms of the P99 beta-lactamase detected by a combination of pre- and post-steady state kinetics.
    Kumar S; Adediran SA; Nukaga M; Pratt RF
    Biochemistry; 2004 Mar; 43(9):2664-72. PubMed ID: 14992604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic and structural characterization of reversibly inactivated beta-lactamase.
    Fink AL; Behner KM; Tan AK
    Biochemistry; 1987 Jul; 26(14):4248-58. PubMed ID: 3117100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elimination of the hydrolytic water molecule in a class A beta-lactamase mutant: crystal structure and kinetics.
    Zawadzke LE; Chen CC; Banerjee S; Li Z; Wäsch S; Kapadia G; Moult J; Herzberg O
    Biochemistry; 1996 Dec; 35(51):16475-82. PubMed ID: 8987980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the importance of a methyl group in beta-lactamase evolution: free energy profiles and molecular modeling.
    Bernstein NJ; Pratt RF
    Biochemistry; 1999 Aug; 38(32):10499-510. PubMed ID: 10441146
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of tazobactam with Staphylococcus aureus PC1 beta-lactamase: a molecular modelling and enzyme kinetics study.
    Denny BJ; Toomer CA; Lambert PA
    Microbios; 1994; 78(317):245-57. PubMed ID: 8078414
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative stabilities of penicillins and cephalosporins to staphylococcal beta-lactamase and activities against Staphylococcus aureus.
    Basker MJ; Edmondson RA; Sutherland R
    J Antimicrob Chemother; 1980 May; 6(3):333-41. PubMed ID: 6967480
    [No Abstract]   [Full Text] [Related]  

  • 36. Effects of methanol cryosolvents on the structural and catalytic properties of bovine trypsin.
    Compton PD; Coll RJ; Fink AL
    J Biol Chem; 1986 Jan; 261(3):1248-52. PubMed ID: 3080421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence of dimerisation among class D beta-lactamases: kinetics of OXA-14 beta-lactamase.
    Danel F; Frère JM; Livermore DM
    Biochim Biophys Acta; 2001 Mar; 1546(1):132-42. PubMed ID: 11257516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structures of the acyl-enzyme complexes of the Staphylococcus aureus beta-lactamase mutant Glu166Asp:Asn170Gln with benzylpenicillin and cephaloridine.
    Chen CC; Herzberg O
    Biochemistry; 2001 Feb; 40(8):2351-8. PubMed ID: 11327855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling study on a hydrolytic mechanism of class A beta-lactamases.
    Ishiguro M; Imajo S
    J Med Chem; 1996 May; 39(11):2207-18. PubMed ID: 8667364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering a novel beta-lactamase by a single point mutation.
    Jacob F; Joris B; Dideberg O; Dusart J; Ghuysen JM; Frère JM
    Protein Eng; 1990 Oct; 4(1):79-86. PubMed ID: 2127105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.