These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 2108742)

  • 21. [Effect of silimarine on activity of lysosomal proteinases in the liver and kidneys during tetramethylthiuram disulfide administration].
    Tabagari SI; Shubitidze TM; Abdushelishvili GV
    Vopr Med Khim; 1988; 34(5):110-3. PubMed ID: 3064406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distribution and biodegradation of polycyclic aromatic hydrocarbons in contaminated sites of Hisar (India).
    Bishnoi K; Sain U; Kumar R; Singh R; Bishnoi NR
    Indian J Exp Biol; 2009 Mar; 47(3):210-7. PubMed ID: 19405388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria.
    Abdelkrim S; Jebara SH; Saadani O; Chiboub M; Abid G; Mannai K; Jebara M
    Arch Microbiol; 2019 Jan; 201(1):107-121. PubMed ID: 30276423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Levels and identities of nonrhizobial microorganisms found in commercial legume inoculant made with nonsterile peat carrier.
    Olsen PE; Rice WA; Bordeleau LM; Demidoff AH; Collins MM
    Can J Microbiol; 1996 Jan; 42(1):72-5. PubMed ID: 8595599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative biodegradation examination of Pseudomonas aeruginosa (ATCC 27853) and other oil degraders on hydrocarbon contaminated soil.
    Szoboszlay S; Atzél B; Kriszt B
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):207-10. PubMed ID: 15296164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains.
    Lin X; Mou R; Cao Z; Xu P; Wu X; Zhu Z; Chen M
    Sci Total Environ; 2016 Nov; 569-570():97-104. PubMed ID: 27341110
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Degradation of 4-aminopyridine in soil.
    Betts PM; Giddings CW; Fleeker JR
    J Agric Food Chem; 1976; 24(3):571-4. PubMed ID: 818143
    [No Abstract]   [Full Text] [Related]  

  • 28. Biotransformation of trinitrotoluene (TNT) by Pseudomonas spp. isolated from a TNT-contaminated environment.
    Chien CC; Kao CM; Chen DY; Chen SC; Chen CC
    Environ Toxicol Chem; 2014 May; 33(5):1059-63. PubMed ID: 24549634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Verification of degradation of n-alkanes in diesel oil by Pseudomonas aeruginosa strain WatG in soil microcosms.
    Ueno A; Hasanuzzaman M; Yumoto I; Okuyama H
    Curr Microbiol; 2006 Mar; 52(3):182-5. PubMed ID: 16502290
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioremediation of chromium contaminated soil by Pseudomonas fluorescens and indigenous microorganisms.
    Jeyalakshmi D; Kanmani S
    J Environ Sci Eng; 2008 Jan; 50(1):1-6. PubMed ID: 19192919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Demulsifying properties of extracellular products and cells of Pseudomonas aeruginosa MSJ isolated from petroleum-contaminated soil.
    Coutinho JO; Silva MP; Moraes PM; Monteiro AS; Barcelos JC; Siqueira EP; Santos VL
    Bioresour Technol; 2013 Jan; 128():646-54. PubMed ID: 23220111
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toxicology of thiram (tetramethylthiuram disulfide): a review.
    Dalvi RR
    Vet Hum Toxicol; 1988 Oct; 30(5):480-2. PubMed ID: 3055654
    [No Abstract]   [Full Text] [Related]  

  • 33. Evaluation of plant-microorganism synergy for the remediation of diesel fuel contaminated soil.
    Lin X; Li X; Li P; Li F; Zhang L; Zhou Q
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):19-24. PubMed ID: 18493697
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Environmental fate and effects of granular pesta formulation from strains of Pseudomonas aeruginosa C1501 and Lasiodiplodia pseudotheobromae C1136 on soil activity and weeds.
    Adetunji CO; Oloke JK; Osemwegie OO
    Chemosphere; 2018 Mar; 195():98-107. PubMed ID: 29258010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioremediation of petroleum contaminated soil to combat toxicity on Withania somnifera through seed priming with biosurfactant producing plant growth promoting rhizobacteria.
    Das AJ; Kumar R
    J Environ Manage; 2016 Jun; 174():79-86. PubMed ID: 27016896
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rhizobium album sp. nov., isolated from a propanil-contaminated soil.
    Hang P; Zhang L; Zhou XY; Hu Q; Jiang JD
    Antonie Van Leeuwenhoek; 2019 Feb; 112(2):319-327. PubMed ID: 30178161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress.
    Islam F; Yasmeen T; Ali Q; Ali S; Arif MS; Hussain S; Rizvi H
    Ecotoxicol Environ Saf; 2014 Jun; 104():285-93. PubMed ID: 24726941
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosurfactant synthesis by Pseudomonas aeruginosa LBI isolated from a hydrocarbon-contaminated site.
    Pirôllo MP; Mariano AP; Lovaglio RB; Costa SG; Walter V; Hausmann R; Contiero J
    J Appl Microbiol; 2008 Nov; 105(5):1484-90. PubMed ID: 18795978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: the impact of a rhizobial inoculum.
    Xu L; Teng Y; Li ZG; Norton JM; Luo YM
    Sci Total Environ; 2010 Feb; 408(5):1007-13. PubMed ID: 19995667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals.
    Chiboub M; Saadani O; Fatnassi IC; Abdelkrim S; Abid G; Jebara M; Jebara SH
    C R Biol; 2016; 339(9-10):391-8. PubMed ID: 27498183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.