BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21087546)

  • 1. Micromorphology of epicuticular waxes and epistomatal chambers of pine species by electron microscopy and white light scanning interferometry.
    Kim KW; Lee IJ; Kim CS; Lee DK; Park EW
    Microsc Microanal; 2011 Feb; 17(1):118-24. PubMed ID: 21087546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D surface profiling and high resolution imaging for refining the florin rings and epicuticular wax crystals of Pinus koraiensis needles.
    Kim KW; Lee ST; Bae SW; Kim PG
    Microsc Res Tech; 2011 Dec; 74(12):1166-73. PubMed ID: 21563270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional surface topography of the needle stomatal complexes of Pinus rigida and its hybrid species by complementary microscopy.
    Kim KW; Kim DH; Han SH; Lee JC; Kim PG
    Micron; 2010 Aug; 41(6):571-6. PubMed ID: 20452778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micromorphology of epicuticular wax structures of the garden strawberry leaves by electron microscopy: syntopism and polymorphism.
    Kim KW; Ahn JJ; Lee JH
    Micron; 2009 Apr; 40(3):327-34. PubMed ID: 19101160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of micromorphology of leaf epicuticular waxes of the rubber tree Ficus elastica by electron microscopy.
    Kim KW
    Micron; 2008 Oct; 39(7):976-84. PubMed ID: 18037304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution imaging and in situ cutting of leaf epicuticular waxes of the biomass plant Miscanthus sinensis.
    Kim KW
    Microscopy (Oxf); 2013; 62(5):541-5. PubMed ID: 23468241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaf surface characterization of the Tabu-No-Ki tree Machilus thunbergii using electron microscopy and white light scanning interferometry.
    Kim KW
    J Electron Microsc (Tokyo); 2012; 61(6):433-40. PubMed ID: 23042824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related leaf characteristics of surface features and ultrastructure of Dendropanax morbifera.
    Kim KW; Koo YK; Yoon CJ
    J Electron Microsc (Tokyo); 2012 Feb; 61(1):37-46. PubMed ID: 22146140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epicuticular Wax and White Pine Blister Rust Resistance in Resistant and Susceptible Selections of Eastern White Pine (Pinus strobus).
    Smith JA; Blanchette RA; Burnes TA; Gillman JH; David AJ
    Phytopathology; 2006 Feb; 96(2):171-7. PubMed ID: 18943920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron microscopic observations of stomata, epicuticular waxes, and papillae in Chamaecyparis obtusa: Reconsidering the traditional concept of Y-shaped white stomatal bands.
    Kim KW
    Microsc Res Tech; 2018 Jul; 81(7):716-723. PubMed ID: 29624793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier.
    Zeisler V; Schreiber L
    Planta; 2016 Jan; 243(1):65-81. PubMed ID: 26341347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaf surfaces of Gomphrena spp. (Amaranthaceae) from Cerrado biome.
    Fank-de-Carvalho SM; Gomes MR; Silva PI; Báo SN
    Biocell; 2010 Apr; 34(1):23-35. PubMed ID: 20506628
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly.
    Koch K; Ensikat HJ
    Micron; 2008 Oct; 39(7):759-72. PubMed ID: 18187332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particulate pollutants are capable to 'degrade' epicuticular waxes and to decrease the drought tolerance of Scots pine (Pinus sylvestris L.).
    Burkhardt J; Pariyar S
    Environ Pollut; 2014 Jan; 184():659-67. PubMed ID: 23791043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epicuticular wax crystals of Wollemia nobilis: morphology and chemical composition.
    Dragota S; Riederer M
    Ann Bot; 2007 Aug; 100(2):225-31. PubMed ID: 17611192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of epicuticular wax crystals on the localization of artificially deposited sub-micron carbon-based aerosols on needles of Cryptomeria japonica.
    Nakaba S; Yamane K; Fukahori M; Nugroho WD; Yamaguchi M; Kuroda K; Sano Y; Wuled Lenggoro I; Izuta T; Funada R
    J Plant Res; 2016 Sep; 129(5):873-881. PubMed ID: 27294967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of wound periderm and hyphal profiles in pine stems inoculated with the pitch canker fungus Fusarium circinatum.
    Kim KW; Lee IJ; Thoungchaleun V; Kim CS; Lee DK; Park EW
    Microsc Res Tech; 2009 Dec; 72(12):965-73. PubMed ID: 19484779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallinity of plant epicuticular waxes: electron and X-ray diffraction studies.
    Ensikat HJ; Boese M; Mader W; Barthlott W; Koch K
    Chem Phys Lipids; 2006 Oct; 144(1):45-59. PubMed ID: 16879815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confocal laser scanning microscopy elucidation of the micromorphology of the leaf cuticle and analysis of its chemical composition.
    Nadiminti PP; Rookes JE; Boyd BJ; Cahill DM
    Protoplasma; 2015 Nov; 252(6):1475-86. PubMed ID: 25712592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanotubules on plant surfaces: chemical composition of epicuticular wax crystals on needles of Taxus baccata L.
    Wen M; Buschhaus C; Jetter R
    Phytochemistry; 2006 Aug; 67(16):1808-17. PubMed ID: 16497341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.