BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 21087546)

  • 21. Nanotubules on plant surfaces: chemical composition of epicuticular wax crystals on needles of Taxus baccata L.
    Wen M; Buschhaus C; Jetter R
    Phytochemistry; 2006 Aug; 67(16):1808-17. PubMed ID: 16497341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self assembly of epicuticular waxes on living plant surfaces imaged by atomic force microscopy (AFM).
    Koch K; Neinhuis C; Ensikat HJ; Barthlott W
    J Exp Bot; 2004 Mar; 55(397):711-8. PubMed ID: 14966216
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical composition of the epicuticular and intracuticular wax layers on adaxial sides of Rosa canina leaves.
    Buschhaus C; Herz H; Jetter R
    Ann Bot; 2007 Dec; 100(7):1557-64. PubMed ID: 17933845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction of organic solvents with the epicuticular wax layer of wheat leaves.
    Myung K; Parobek AP; Godbey JA; Bowling AJ; Pence HE
    J Agric Food Chem; 2013 Sep; 61(37):8737-42. PubMed ID: 23964787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Image analysis of epicuticular damage to foliage caused by dry deposition of the air pollutant nitric acid.
    Padgett PE; Parry SD; Bytnerowicz A; Heath RL
    J Environ Monit; 2009 Jan; 11(1):63-74. PubMed ID: 19137141
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Population variability of nonacosan-10-ol and n-alkanes in needle cuticular waxes of Macedonian pine (Pinus peuce GRISEB.).
    Nikolić B; Tešević V; Dorđević I; Todosijević M; Jadranin M; Bojović S; Marin PD
    Chem Biodivers; 2012 Jun; 9(6):1155-65. PubMed ID: 22700233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leaf anatomy and histochemistry of three species of Ficus sect. Americanae supported by light and electron microscopy.
    Araújo ND; Coelho VP; Ventrella MC; Agra Mde F
    Microsc Microanal; 2014 Feb; 20(1):296-304. PubMed ID: 24230481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toward in vivo chemical imaging of epicuticular waxes.
    Weissflog I; Vogler N; Akimov D; Dellith A; Schachtschabel D; Svatos A; Boland W; Dietzek B; Popp J
    Plant Physiol; 2010 Oct; 154(2):604-10. PubMed ID: 20709828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative morphology of leaf epidermis in eight populations of Atlas Pistachio (Pistacia atlantica Desf., Anacardiaceae).
    Belhadj S; Derridj A; Aigouy T; Gers C; Gauquelin T; Mevy JP
    Microsc Res Tech; 2007 Oct; 70(10):837-46. PubMed ID: 17576128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Composition differences between epicuticular and intracuticular wax substructures: how do plants seal their epidermal surfaces?
    Buschhaus C; Jetter R
    J Exp Bot; 2011 Jan; 62(3):841-53. PubMed ID: 21193581
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cabbage waxes affect Trissolcus brochymenae response to short-range synomones.
    Frati F; Salerno G; Conti E
    Insect Sci; 2013 Dec; 20(6):753-62. PubMed ID: 23956054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Plant epicuticular wax and drought resistance as well as its molecular biology].
    Li WQ; Zhang ZB; Li JJ
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Oct; 32(5):505-12. PubMed ID: 17075172
    [TBL] [Abstract][Full Text] [Related]  

  • 33. "Wax On, Wax Off": In Vivo Imaging of Plant Physiology and Disease with Fourier Transform Infrared Reflectance Microspectroscopy.
    Khambatta K; Hollings A; Sauzier G; Sanglard LMVP; Klein AR; Tobin MJ; Vongsvivut J; Gibberd MR; Payne AD; Naim F; Hackett MJ
    Adv Sci (Weinh); 2021 Oct; 8(19):e2101902. PubMed ID: 34338438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The use of plant waxes as templates for micro- and nanopatterning of surfaces.
    Koch K; Dommisse A; Barthlott W; Gorb SN
    Acta Biomater; 2007 Nov; 3(6):905-9. PubMed ID: 17656166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ontogenetic variation in chemical and physical characteristics of adaxial apple leaf surfaces.
    Bringe K; Schumacher CF; Schmitz-Eiberger M; Steiner U; Oerke EC
    Phytochemistry; 2006 Jan; 67(2):161-70. PubMed ID: 16321411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural analysis of wheat wax (Triticum aestivum, c.v. 'Naturastar' L.): from the molecular level to three dimensional crystals.
    Koch K; Barthlott W; Koch S; Hommes A; Wandelt K; Mamdouh W; De-Feyter S; Broekmann P
    Planta; 2006 Jan; 223(2):258-70. PubMed ID: 16133211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Total internal reflection Raman spectroscopy of barley leaf epicuticular waxes in vivo.
    Greene PR; Bain CD
    Colloids Surf B Biointerfaces; 2005 Nov; 45(3-4):174-80. PubMed ID: 16198093
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Leaf epidermal characteristics of Cissampelos L. (Menispermaceae) species from Northeastern Brazil.
    Porto NM; De Figueiredo RC; Oliveira AF; De Fátima Agra M
    Microsc Res Tech; 2011 Apr; 74(4):370-6. PubMed ID: 20734407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical and morphological characteristics of key tree species of the Carpathian Mountains.
    Mankovská B; Godzik B; Badea O; Shparyk Y; Moravcík P
    Environ Pollut; 2004 Jul; 130(1):41-54. PubMed ID: 15046839
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment.
    Gorb E; Haas K; Henrich A; Enders S; Barbakadze N; Gorb S
    J Exp Biol; 2005 Dec; 208(Pt 24):4651-62. PubMed ID: 16326946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.