These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 21087623)

  • 1. Enzymatic degradation of Antheraea pernyi silk fibroin 3D scaffolds and fibers.
    Zhao C; Wu X; Zhang Q; Yan S; Li M
    Int J Biol Macromol; 2011 Mar; 48(2):249-55. PubMed ID: 21087623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro study of the proteolytic degradation of Antheraea pernyi silk fibroin.
    Taddei P; Arai T; Boschi A; Monti P; Tsukada M; Freddi G
    Biomacromolecules; 2006 Jan; 7(1):259-67. PubMed ID: 16398523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic degradation behavior of porous silk fibroin sheets.
    Li M; Ogiso M; Minoura N
    Biomaterials; 2003 Jan; 24(2):357-65. PubMed ID: 12419638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and properties of regenerated Antheraea pernyi silk fibroin in aqueous solution.
    Tao W; Li M; Zhao C
    Int J Biol Macromol; 2007 Apr; 40(5):472-8. PubMed ID: 17173967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the in vitro and in vivo degradations of silk fibroin scaffolds from mulberry and nonmulberry silkworms.
    You R; Xu Y; Liu Y; Li X; Li M
    Biomed Mater; 2014 Dec; 10(1):015003. PubMed ID: 25532470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films.
    Luan XY; Wang Y; Duan X; Duan QY; Li MZ; Lu SZ; Zhang HX; Zhang XG
    Biomed Mater; 2006 Dec; 1(4):181-7. PubMed ID: 18458403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation Behavior and Immunological Detection of Silk Fibroin Exposure to Enzymes.
    Chen R; Zhou L; Yang H; Zheng H; Zhou Y; Hu Z; Wang B
    Anal Sci; 2019 Nov; 35(11):1243-1249. PubMed ID: 31353338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of tyrosine-rich Antheraea pernyi silk fibroin hydrolysate.
    Lee KG; Kweon H; Yeo JH; Woo S; Han S; Kim JH
    Int J Biol Macromol; 2011 Jan; 48(1):223-6. PubMed ID: 20937302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compliant film of regenerated Antheraea pernyi silk fibroin by chemical crosslinking.
    Li M; Tao W; Lu S; Kuga S
    Int J Biol Macromol; 2003 Sep; 32(3-5):159-63. PubMed ID: 12957312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro degradation of silk fibroin.
    Horan RL; Antle K; Collette AL; Wang Y; Huang J; Moreau JE; Volloch V; Kaplan DL; Altman GH
    Biomaterials; 2005 Jun; 26(17):3385-93. PubMed ID: 15621227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation of hydroxyapatite on Antheraea pernyi (A. pernyi) silk fibroin film.
    Yang M; Shuai Y; Zhou G; Mandal N; Zhu L
    Biomed Mater Eng; 2014; 24(1):731-40. PubMed ID: 24211958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and in vitro characterization of biomorphic silk fibroin scaffolds for bone tissue engineering.
    Qian J; Suo A; Jin X; Xu W; Xu M
    J Biomed Mater Res A; 2014 Sep; 102(9):2961-71. PubMed ID: 24123779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physically crosslinked silk fibroin/hyaluronic acid scaffolds.
    Guan Y; You H; Cai J; Zhang Q; Yan S; You R
    Carbohydr Polym; 2020 Jul; 239():116232. PubMed ID: 32414432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antheraea pernyi silk fibroin maintains the immunosupressive properties of human bone marrow mesenchymal stem cells.
    Luan XY; Huo GH; Li MZ; Lu SZ; Zhang XG
    Cell Biol Int; 2009 Nov; 33(11):1127-34. PubMed ID: 19664716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable materials based on silk fibroin and keratin.
    Vasconcelos A; Freddi G; Cavaco-Paulo A
    Biomacromolecules; 2008 Apr; 9(4):1299-305. PubMed ID: 18355027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent Immobilization of Catalase onto Regenerated Silk Fibroins via Tyrosinase-Catalyzed Cross-Linking.
    Wang P; Qi C; Yu Y; Yuan J; Cui L; Tang G; Wang Q; Fan X
    Appl Biochem Biotechnol; 2015 Sep; 177(2):472-85. PubMed ID: 26189105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green process to prepare silk fibroin/gelatin biomaterial scaffolds.
    Lu Q; Zhang X; Hu X; Kaplan DL
    Macromol Biosci; 2010 Mar; 10(3):289-98. PubMed ID: 19924684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of sterilization on the enzymatic degradation and mechanical properties of silk biomaterials.
    Gil ES; Park SH; Hu X; Cebe P; Kaplan DL
    Macromol Biosci; 2014 Feb; 14(2):257-69. PubMed ID: 24519787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion-induced fabrication of silk fibroin nanoparticles from Chinese oak tasar Antheraea pernyi.
    Wang J; Zhang S; Xing T; Kundu B; Li M; Kundu SC; Lu S
    Int J Biol Macromol; 2015 Aug; 79():316-25. PubMed ID: 25936281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous 3-D scaffolds from regenerated silk fibroin.
    Nazarov R; Jin HJ; Kaplan DL
    Biomacromolecules; 2004; 5(3):718-26. PubMed ID: 15132652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.