BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21087864)

  • 41. Secondary metabolites and cytotoxic activities from the stem bark of Zanthoxylum nitidum.
    Yang CH; Cheng MJ; Lee SJ; Yang CW; Chang HS; Chen IS
    Chem Biodivers; 2009 Jun; 6(6):846-57. PubMed ID: 19551734
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A new furofuran lignan from Isodon japonicus.
    Hong SS; Lee C; Lee CH; Park M; Lee MS; Hong JT; Lee H; Lee MK; Hwang BY
    Arch Pharm Res; 2009 Apr; 32(4):501-4. PubMed ID: 19407966
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A New Lignan from the Leaves of Zanthoxylum armatum.
    Bhatt V; Sharma S; Kumar N; Singh B
    Nat Prod Commun; 2017 Jan; 12(1):99-100. PubMed ID: 30549837
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lignans from the stems of Sambucus williamsii and their effects on osteoblastic UMR106 cells.
    Yang XJ; Wong MS; Wang NL; Chan SC; Yao XS
    J Asian Nat Prod Res; 2007; 9(6-8):583-91. PubMed ID: 17701563
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lignans from the tuber-barks of Colocasia antiquorum var. esculenta and their antimelanogenic Activity.
    Kim KH; Moon E; Kim SY; Lee KR
    J Agric Food Chem; 2010 Apr; 58(8):4779-85. PubMed ID: 20359228
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new lignan from Balanophora abbreviata and inhibition of lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) expression.
    Hosokawa A; Sumino M; Nakamura T; Yano S; Sekine T; Ruangrungsi N; Watanabe K; Ikegami F
    Chem Pharm Bull (Tokyo); 2004 Oct; 52(10):1265-7. PubMed ID: 15467252
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cytotoxic lignans from the stem bark of Magnolia officinalis.
    Youn UJ; Chen QC; Jin WY; Lee IS; Kim HJ; Lee JP; Chang MJ; Min BS; Bae KH
    J Nat Prod; 2007 Oct; 70(10):1687-9. PubMed ID: 17918910
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Two new lignans from the roots of Pulsatilla koreana.
    Cuong TD; Hung TM; Kim JC; Huh JI; Kwack SJ; Kang TS; Kim JH; Jang HS; Choi JS; Lee HK; Bae K; Min BS
    Planta Med; 2011 Jan; 77(1):66-9. PubMed ID: 20645248
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lignans from the root of Rhodiola crenulata.
    Yang YN; Liu ZZ; Feng ZM; Jiang JS; Zhang PC
    J Agric Food Chem; 2012 Feb; 60(4):964-72. PubMed ID: 22225005
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Neolignans, a coumarinolignan, lignan derivatives, and a chromene: anti-inflammatory constituents from Zanthoxylum avicennae.
    Chen JJ; Wang TY; Hwang TL
    J Nat Prod; 2008 Feb; 71(2):212-7. PubMed ID: 18211005
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kadsuralignans H-K from Kadsura coccinea and their nitric oxide production inhibitory effects.
    Li H; Wang L; Yang Z; Kitanaka S
    J Nat Prod; 2007 Dec; 70(12):1999-2002. PubMed ID: 18027905
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lignans from the roots of Echinops giganteus.
    Tene M; Tane P; Sondengam BL; Connolly JD
    Phytochemistry; 2004 Jul; 65(14):2101-5. PubMed ID: 15279979
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Coumarins and lignans from Zanthoxylum schinifolium and their anticancer activities.
    Li W; Sun YN; Yan XT; Yang SY; Kim EJ; Kang HK; Kim YH
    J Agric Food Chem; 2013 Nov; 61(45):10730-40. PubMed ID: 24144361
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioactive lignans from the rhizomes of Acorus gramineus.
    Kim KH; Kim HK; Choi SU; Moon E; Kim SY; Lee KR
    J Nat Prod; 2011 Oct; 74(10):2187-92. PubMed ID: 21936523
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bioactive Constituents of Zanthoxylum rhetsa Bark and Its Cytotoxic Potential against B16-F10 Melanoma Cancer and Normal Human Dermal Fibroblast (HDF) Cell Lines.
    Santhanam RK; Ahmad S; Abas F; Safinar Ismail I; Rukayadi Y; Tayyab Akhtar M; Shaari K
    Molecules; 2016 May; 21(6):. PubMed ID: 27231889
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lignans from Isatis indigotica roots and their inhibitory effects on nitric oxide production.
    Zhang D; Li J; Ruan D; Chen Z; Zhu W; Shi Y; Chen K; Li Y; Wang R
    Fitoterapia; 2019 Sep; 137():104189. PubMed ID: 31158429
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mono- and sesquiterpenoids, flavonoids, lignans, and other miscellaneous compounds of Abies georgei.
    Yang XW; Li YL; Li SM; Shen YH; Tian JM; Zhu ZJ; Feng L; Wu L; Lin S; Wang N; Liu Y; Zhang WD
    Planta Med; 2011 May; 77(7):742-8. PubMed ID: 21104603
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lignans from Saussurea conica and their NO production suppressing activity.
    Fan CQ; Zhu XZ; Zhan ZJ; Ji XQ; Li H; Yue JM
    Planta Med; 2006 Jun; 72(7):590-5. PubMed ID: 16636966
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [A new lignan from stem bark of Syringa pinnatifolia].
    Bai RF; Su GZ; Feng X; Zhang RF; Yin X; Ye YY; Chen SY; Tu PF; Chai XY
    Zhongguo Zhong Yao Za Zhi; 2017 Apr; 42(7):1229-1233. PubMed ID: 29052378
    [TBL] [Abstract][Full Text] [Related]  

  • 60. New monoterpene glycosides from Paeonia suffruticosa Andrews and their inhibition on NO production in LPS-induced RAW 264.7 cells.
    Ding L; Zhao F; Chen L; Jiang Z; Liu Y; Li Z; Qiu F; Yao X
    Bioorg Med Chem Lett; 2012 Dec; 22(23):7243-7. PubMed ID: 23067550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.