These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 21087968)
1. In vivo efficacy of bone marrow stromal cells coated with beta-tricalcium phosphate for the reconstruction of orbital defects in canines. Zhou H; Xiao C; Wang Y; Bi X; Ge S; Fan X Invest Ophthalmol Vis Sci; 2011 Mar; 52(3):1735-41. PubMed ID: 21087968 [TBL] [Abstract][Full Text] [Related]
2. Orbital wall repair in canines with beta-tricalcium phosphate and induced bone marrow stromal cells. Zhou H; Deng Y; Bi X; Xiao C; Wang Y; Sun J; Gu P; Fan X J Biomed Mater Res B Appl Biomater; 2013 Nov; 101(8):1340-9. PubMed ID: 23687075 [TBL] [Abstract][Full Text] [Related]
3. Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate. Yuan J; Cui L; Zhang WJ; Liu W; Cao Y Biomaterials; 2007 Feb; 28(6):1005-13. PubMed ID: 17092556 [TBL] [Abstract][Full Text] [Related]
4. Repair of canine medial orbital bone defects with miR-31-modified bone marrow mesenchymal stem cells. Deng Y; Zhou H; Gu P; Fan X Invest Ophthalmol Vis Sci; 2014 Aug; 55(9):6016-23. PubMed ID: 25168901 [TBL] [Abstract][Full Text] [Related]
5. Repair of goat tibial defects with bone marrow stromal cells and beta-tricalcium phosphate. Liu G; Zhao L; Zhang W; Cui L; Liu W; Cao Y J Mater Sci Mater Med; 2008 Jun; 19(6):2367-76. PubMed ID: 18158615 [TBL] [Abstract][Full Text] [Related]
6. Repair of orbital bone defects in canines using grafts of enriched autologous bone marrow stromal cells. Wang Y; Bi X; Zhou H; Deng Y; Sun J; Xiao C; Gu P; Fan X J Transl Med; 2014 May; 12():123. PubMed ID: 24886296 [TBL] [Abstract][Full Text] [Related]
7. Reconstruction of orbital defects by implantation of antigen-free bovine cancellous bone scaffold combined with bone marrow mesenchymal stem cells in rats. Zhao J; Yang C; Su C; Yu M; Zhang X; Huang S; Li G; Yu M; Li X Graefes Arch Clin Exp Ophthalmol; 2013 May; 251(5):1325-33. PubMed ID: 23519882 [TBL] [Abstract][Full Text] [Related]
8. Repair of orbital wall defects using biocoral scaffolds combined with bone marrow stem cells enhanced by human bone morphogenetic protein-2 in a canine model. Xiao C; Zhou H; Ge S; Tang T; Hou H; Luo M; Fan X Int J Mol Med; 2010 Oct; 26(4):517-25. PubMed ID: 20818491 [TBL] [Abstract][Full Text] [Related]
9. Orthodontic tooth movement in alveolar cleft repaired with a tissue engineering bone: an experimental study in dogs. Zhang D; Chu F; Yang Y; Xia L; Zeng D; Uludağ H; Zhang X; Qian Y; Jiang X Tissue Eng Part A; 2011 May; 17(9-10):1313-25. PubMed ID: 21226625 [TBL] [Abstract][Full Text] [Related]
10. Experimental study on reconstruction of segmental mandible defects using tissue engineered bone combined bone marrow stromal cells with three-dimensional tricalcium phosphate. He Y; Zhang ZY; Zhu HG; Qiu W; Jiang X; Guo W J Craniofac Surg; 2007 Jul; 18(4):800-5. PubMed ID: 17667668 [TBL] [Abstract][Full Text] [Related]
11. Autogenous bone marrow stromal cell sheets-loaded mPCL/TCP scaffolds induced osteogenesis in a porcine model of spinal interbody fusion. Abbah SA; Lam CX; Ramruttun KA; Goh JC; Wong HK Tissue Eng Part A; 2011 Mar; 17(5-6):809-17. PubMed ID: 20973747 [TBL] [Abstract][Full Text] [Related]
12. Apatite-coated silk fibroin scaffolds to healing mandibular border defects in canines. Zhao J; Zhang Z; Wang S; Sun X; Zhang X; Chen J; Kaplan DL; Jiang X Bone; 2009 Sep; 45(3):517-27. PubMed ID: 19505603 [TBL] [Abstract][Full Text] [Related]
14. [Establishment and biological effect evaluation of prevascularized porous β-tricalcium phosphate tissue engineered bone]. Huang M; Fan J; Ma Z; Li J; Lu Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 May; 36(5):625-632. PubMed ID: 35570639 [TBL] [Abstract][Full Text] [Related]
15. Repair of canine mandibular bone defects with bone marrow stromal cells and coral. Yuan J; Zhang WJ; Liu G; Wei M; Qi ZL; Liu W; Cui L; Cao YL Tissue Eng Part A; 2010 Apr; 16(4):1385-94. PubMed ID: 19925049 [TBL] [Abstract][Full Text] [Related]
16. Osteogenesis of the construct combined BMSCs with beta-TCP in rat. Zhang M; Wang K; Shi Z; Yang H; Dang X; Wang W J Plast Reconstr Aesthet Surg; 2010 Feb; 63(2):227-32. PubMed ID: 19091642 [TBL] [Abstract][Full Text] [Related]
17. [An experimental study on repairing bone defect with composite of beta-tricalcium phosphate-hyaluronic acid-type I collagen-marrow stromal cells]. Wei A; Liu S; Peng H; Tao H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Jun; 19(6):468-72. PubMed ID: 16038466 [TBL] [Abstract][Full Text] [Related]
18. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds. Ye X; Yin X; Yang D; Tan J; Liu G Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840 [TBL] [Abstract][Full Text] [Related]
19. [Experimental study of porous TCP to generate tissue-engineered long bone]. Zhu L; Yuan J; Wang M; Chen FG; Zhou GD; Liu W; Cao YL Sheng Wu Gong Cheng Xue Bao; 2004 Jul; 20(4):561-7. PubMed ID: 15968989 [TBL] [Abstract][Full Text] [Related]
20. [Effects of Endothelial Progenitor Cells on Vascularization and Osteogenesis of Tissue-engineered Bones in Beagle Dogs]. Wu XW; Yin J; Wei YX Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 2018 Oct; 40(5):642-650. PubMed ID: 30404696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]