BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 21088576)

  • 21. SPAK and OSR1 play essential roles in potassium homeostasis through actions on the distal convoluted tubule.
    Ferdaus MZ; Barber KW; López-Cayuqueo KI; Terker AS; Argaiz ER; Gassaway BM; Chambrey R; Gamba G; Rinehart J; McCormick JA
    J Physiol; 2016 Sep; 594(17):4945-66. PubMed ID: 27068441
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway.
    Richardson C; Alessi DR
    J Cell Sci; 2008 Oct; 121(Pt 20):3293-304. PubMed ID: 18843116
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The interplay of renal potassium and sodium handling in blood pressure regulation: critical role of the WNK-SPAK-NCC pathway.
    Wu A; Wolley M; Stowasser M
    J Hum Hypertens; 2019 Jul; 33(7):508-523. PubMed ID: 30723251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pathophysiological roles of WNK kinases in the kidney.
    Uchida S
    Pflugers Arch; 2010 Sep; 460(4):695-702. PubMed ID: 20490538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [WNK-SPAK-SLC12A signal cascade is a new therapeutic target for hypertension].
    Kikuchi E; Mori T; Uchida S
    Nihon Rinsho; 2015 Sep; 73(9):1597-605. PubMed ID: 26394527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Renal TNFα activates the WNK phosphorylation cascade and contributes to salt-sensitive hypertension in chronic kidney disease.
    Furusho T; Sohara E; Mandai S; Kikuchi H; Takahashi N; Fujimaru T; Hashimoto H; Arai Y; Ando F; Zeniya M; Mori T; Susa K; Isobe K; Nomura N; Yamamoto K; Okado T; Rai T; Uchida S
    Kidney Int; 2020 Apr; 97(4):713-727. PubMed ID: 32059997
    [TBL] [Abstract][Full Text] [Related]  

  • 27. WNK kinases regulate thiazide-sensitive Na-Cl cotransport.
    Yang CL; Angell J; Mitchell R; Ellison DH
    J Clin Invest; 2003 Apr; 111(7):1039-45. PubMed ID: 12671053
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of regulation of renal ion transport by WNK kinases.
    Huang CL; Yang SS; Lin SH
    Curr Opin Nephrol Hypertens; 2008 Sep; 17(5):519-25. PubMed ID: 18695394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disruption of the with no lysine kinase-STE20-proline alanine-rich kinase pathway reduces the hypertension induced by angiotensin II.
    Cervantes-Perez LG; Castaneda-Bueno M; Jimenez JV; Vazquez N; Rojas-Vega L; Alessi DR; Bobadilla NA; Gamba G
    J Hypertens; 2018 Feb; 36(2):361-367. PubMed ID: 28877076
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular physiology of the thiazide-sensitive sodium-chloride cotransporter.
    Ko B; Hoover RS
    Curr Opin Nephrol Hypertens; 2009 Sep; 18(5):421-7. PubMed ID: 19636250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sympathetic Regulation of the NCC (Sodium Chloride Cotransporter) in Dahl Salt-Sensitive Hypertension.
    Puleo F; Kim K; Frame AA; Walsh KR; Ferdaus MZ; Moreira JD; Comsti E; Faudoa E; Nist KM; Abkin E; Wainford RD
    Hypertension; 2020 Nov; 76(5):1461-1469. PubMed ID: 32981364
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A unifying mechanism for WNK kinase regulation of sodium-chloride cotransporter.
    Huang CL; Cheng CJ
    Pflugers Arch; 2015 Nov; 467(11):2235-41. PubMed ID: 25904388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Activation of the kidney sodium chloride cotransporter by the β2-adrenergic receptor agonist salbutamol increases blood pressure.
    Poulsen SB; Cheng L; Penton D; Kortenoeven MLA; Matchkov VV; Loffing J; Little R; Murali SK; Fenton RA
    Kidney Int; 2021 Aug; 100(2):321-335. PubMed ID: 33940111
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium-Sensing Receptor and Regulation of WNK Kinases in the Kidney.
    Ostroverkhova DS; Hu J; Tarasov VV; Melnikova TI; Porozov YB; Mutig K
    Cells; 2020 Jul; 9(7):. PubMed ID: 32659887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorylation regulates NCC stability and transporter activity in vivo.
    Yang SS; Fang YW; Tseng MH; Chu PY; Yu IS; Wu HC; Lin SW; Chau T; Uchida S; Sasaki S; Lin YF; Sytwu HK; Lin SH
    J Am Soc Nephrol; 2013 Oct; 24(10):1587-97. PubMed ID: 23833262
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aldosterone acutely stimulates NCC activity via a SPAK-mediated pathway.
    Ko B; Mistry AC; Hanson L; Mallick R; Wynne BM; Thai TL; Bailey JL; Klein JD; Hoover RS
    Am J Physiol Renal Physiol; 2013 Sep; 305(5):F645-52. PubMed ID: 23739593
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of angiotensin II on the WNK-OSR1/SPAK-NCC phosphorylation cascade in cultured mpkDCT cells and in vivo mouse kidney.
    Talati G; Ohta A; Rai T; Sohara E; Naito S; Vandewalle A; Sasaki S; Uchida S
    Biochem Biophys Res Commun; 2010 Mar; 393(4):844-8. PubMed ID: 20175999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. WNK-SPAK/OSR1 signaling: lessons learned from an insect renal epithelium.
    Rodan AR
    Am J Physiol Renal Physiol; 2018 Oct; 315(4):F903-F907. PubMed ID: 29923766
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The WNK signaling pathway and salt-sensitive hypertension.
    Furusho T; Uchida S; Sohara E
    Hypertens Res; 2020 Aug; 43(8):733-743. PubMed ID: 32286498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aldosterone modulates thiazide-sensitive sodium chloride cotransporter abundance via DUSP6-mediated ERK1/2 signaling pathway.
    Feng X; Zhang Y; Shao N; Wang Y; Zhuang Z; Wu P; Lee MJ; Liu Y; Wang X; Zhuang J; Delpire E; Gu D; Cai H
    Am J Physiol Renal Physiol; 2015 May; 308(10):F1119-27. PubMed ID: 25761881
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.