BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 21088689)

  • 1. QSRR Models for Kováts' Retention Indices of a Variety of Volatile Organic Compounds on Polar and Apolar GC Stationary Phases Using Molecular Connectivity Indexes.
    Ghavami R; Faham S
    Chromatographia; 2010 Nov; 72(9-10):893-903. PubMed ID: 21088689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-Empirical Topological Method for Prediction of the Relative Retention Time of Polychlorinated Biphenyl Congeners on 18 Different HR GC Columns.
    Ghavami R; Mohammad Sajadi S
    Chromatographia; 2010 Sep; 72(5-6):523-533. PubMed ID: 20835381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfer of gas chromatographic retention data among poly(siloxane) columns by quantitative structure-retention relationships based on molecular descriptors of both solutes and stationary phases.
    Biancolillo A; D'Archivio AA
    J Chromatogr A; 2022 Jan; 1663():462758. PubMed ID: 34954535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSPR study of GC retention indices for saturated esters on seven stationary phases based on novel topological indices.
    Liu F; Liang Y; Cao C; Zhou N
    Talanta; 2007 Jun; 72(4):1307-15. PubMed ID: 19071762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cluster and principal component analysis for Kováts' retention indices on apolar and polar stationary phases in gas chromatography.
    Dallos A; Ngo HS; Kresz R; Héberger K
    J Chromatogr A; 2008 Jan; 1177(1):175-82. PubMed ID: 18067899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Relativity study of the topological index of methylalkane structures and chromatographic retention index].
    Xiang Z; Liang Y; Hu Q
    Se Pu; 2005 Mar; 23(2):117-22. PubMed ID: 16013551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical prediction of the Kovat's retention index for oxygen-containing organic compounds using novel topological indices.
    Liu F; Liang Y; Cao C; Zhou N
    Anal Chim Acta; 2007 Jul; 594(2):279-89. PubMed ID: 17586126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of validated quantitative structure-retention relationship models for retention indices of plant essential oils.
    Qin LT; Liu SS; Chen F; Wu QS
    J Sep Sci; 2013 May; 36(9-10):1553-60. PubMed ID: 23441046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foodinformatics: Quantitative Structure-Property Relationship Modeling of Volatile Organic Compounds in Peppers.
    Rojas C; Duchowicz PR; Castro EA
    J Food Sci; 2019 Apr; 84(4):770-781. PubMed ID: 30810240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of retention in hydrophilic interaction liquid chromatography using solute molecular descriptors based on chemical structures.
    Taraji M; Haddad PR; Amos RI; Talebi M; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():59-67. PubMed ID: 28049585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localised quantitative structure-retention relationship modelling for rapid method development in reversed-phase high performance liquid chromatography.
    Park SH; De Pra M; Haddad PR; Grosse S; Pohl CA; Steiner F
    J Chromatogr A; 2020 Jan; 1609():460508. PubMed ID: 31530383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-empirical topological method for prediction of the gas chromatographic relative retention times of polybrominated diphenyl ethers (PBDEs).
    Liu HY; Liu SS; Qin LT
    J Mol Model; 2007 May; 13(5):611-27. PubMed ID: 17390156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative structure and retention relationships for gas chromatographic data: application to alkyl pyridines on apolar and polar phases.
    Tulasamma P; Reddy KS
    J Mol Graph Model; 2006 Dec; 25(4):507-13. PubMed ID: 16713723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative structure-retention relationship of new N-substituted 2-alkylidene-4-oxothiazolidines.
    Dabić D; Natić M; Džambaski Z; Marković R; Milojković-Opsenica D; Tešić Ž
    J Sep Sci; 2011 Sep; 34(18):2397-404. PubMed ID: 21735548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemometric model for predicting retention indices of constituents of essential oils.
    Qin LT; Liu SS; Chen F; Xiao QF; Wu QS
    Chemosphere; 2013 Jan; 90(2):300-5. PubMed ID: 22868195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular structure and gas chromatographic retention behavior of the components of Ylang-Ylang oil.
    Olivero J; Gracia T; Payares P; Vivas R; Díaz D; Daza E; Geerlings P
    J Pharm Sci; 1997 May; 86(5):625-30. PubMed ID: 9145390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of retention behavior of polychlorinated biphenyl congeners on 18 different HRGC columns using molecular surface average local ionization energy descriptors.
    Ghavami R; Sepehri B
    J Chromatogr A; 2012 Apr; 1233():116-25. PubMed ID: 22386058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the accuracy of Kováts' retention indices in isothermal gas chromatography.
    Lebrón-Aguilar R; Quintanilla-López JE; García-Domínguez JA
    J Chromatogr A; 2002 Feb; 945(1-2):185-94. PubMed ID: 11860135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The prediction for gas chromatographic retention indices of saturated esters on stationary phases of different polarity.
    Wang Y; Yao X; Zhang X; Zhang R; Liu M; Hu Z; Fan B
    Talanta; 2002 Jun; 57(4):641-52. PubMed ID: 18968665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-column prediction of gas-chromatographic retention of polychlorinated biphenyls by artificial neural networks.
    D'Archivio AA; Incani A; Ruggieri F
    J Chromatogr A; 2011 Dec; 1218(48):8679-90. PubMed ID: 22000780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.