These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 21088765)

  • 21. Yeast Replicator: A High-Throughput Multiplexed Microfluidics Platform for Automated Measurements of Single-Cell Aging.
    Liu P; Young TZ; Acar M
    Cell Rep; 2015 Oct; 13(3):634-644. PubMed ID: 26456818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidics for synthetic biology: from design to execution.
    Ferry MS; Razinkov IA; Hasty J
    Methods Enzymol; 2011; 497():295-372. PubMed ID: 21601093
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-throughput screening approaches and combinatorial development of biomaterials using microfluidics.
    Barata D; van Blitterswijk C; Habibovic P
    Acta Biomater; 2016 Apr; 34():1-20. PubMed ID: 26361719
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein expression patterns of the yeast mating response.
    Yuan H; Zhang R; Shao B; Wang X; Ouyang Q; Hao N; Luo C
    Integr Biol (Camb); 2016 Jun; 8(6):712-9. PubMed ID: 27177258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A simple method to determine the surface charge in microfluidic channels.
    Mampallil D; van den Ende D; Mugele F
    Electrophoresis; 2010 Jan; 31(3):563-9. PubMed ID: 20119966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Using Microfluidic Devices to Measure Lifespan and Cellular Phenotypes in Single Budding Yeast Cells.
    Zou K; Ren DS; Ou-Yang Q; Li H; Zheng J
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28448036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards high throughput production of artificial egg oocytes using microfluidics.
    Jimenez AM; Roché M; Pinot M; Panizza P; Courbin L; Gueroui Z
    Lab Chip; 2011 Feb; 11(3):429-34. PubMed ID: 21072407
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A design and optimization of a high throughput valve based microfluidic device for single cell compartmentalization and analysis.
    Briones J; Espulgar W; Koyama S; Takamatsu H; Tamiya E; Saito M
    Sci Rep; 2021 Jun; 11(1):12995. PubMed ID: 34155296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Throughput Yeast Aging Analysis for Cryptococcus (HYAAC) microfluidic device streamlines aging studies in
    Orner EP; Zhang P; Jo MC; Bhattacharya S; Qin L; Fries BC
    Commun Biol; 2019; 2():256. PubMed ID: 31312725
    [No Abstract]   [Full Text] [Related]  

  • 30. A microfluidic device for studying multiple distinct strains.
    Aidelberg G; Goldshmidt Y; Nachman I
    J Vis Exp; 2012 Nov; (69):. PubMed ID: 23169189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of Microfluidic Dilution Network-Based System for Lab-on-a-Chip Microalgal Bioassays.
    Zheng G; Lu L; Yang Y; Wei J; Han B; Zhang Q; Wang Y
    Anal Chem; 2018 Nov; 90(22):13280-13289. PubMed ID: 30345743
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel two-layer-integrated microfluidic device for high-throughput yeast proteomic dynamics analysis at the single-cell level.
    Chen K; Rong N; Wang S; Luo C
    Integr Biol (Camb); 2020 Oct; 12(10):241-249. PubMed ID: 32995887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Reynolds Microfluidic Sorting of Large Yeast Populations.
    Keinan E; Abraham AC; Cohen A; Alexandrov AI; Mintz R; Cohen M; Reichmann D; Kaganovich D; Nahmias Y
    Sci Rep; 2018 Sep; 8(1):13739. PubMed ID: 30214051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An automated microfluidic system for efficient capture of rare cells and rapid flow-free stimulation.
    Dettinger P; Wang W; Ahmed N; Zhang Y; Loeffler D; Kull T; Etzrodt M; Lengerke C; Schroeder T
    Lab Chip; 2020 Nov; 20(22):4246-4254. PubMed ID: 33063816
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis.
    Wen N; Zhao Z; Fan B; Chen D; Men D; Wang J; Chen J
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27399651
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis.
    Chen P; Li S; Guo Y; Zeng X; Liu BF
    Anal Chim Acta; 2020 Aug; 1125():94-113. PubMed ID: 32674786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An integrative temperature-controlled microfluidic system for budding yeast heat shock response analysis at the single-cell level.
    Hong J; He H; Xu Y; Wang S; Luo C
    Lab Chip; 2024 Jul; 24(15):3658-3667. PubMed ID: 38915274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An agar gel membrane-PDMS hybrid microfluidic device for long term single cell dynamic study.
    Wong I; Atsumi S; Huang WC; Wu TY; Hanai T; Lam ML; Tang P; Yang J; Liao JC; Ho CM
    Lab Chip; 2010 Oct; 10(20):2710-9. PubMed ID: 20664845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-Throughput Microfluidics for the Screening of Yeast Libraries.
    Huang M; Joensson HN; Nielsen J
    Methods Mol Biol; 2018; 1671():307-317. PubMed ID: 29170967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A computer vision and residual neural network (ResNet) combined method for automated and accurate yeast replicative aging analysis of high-throughput microfluidic single-cell images.
    Xiao Q; Wang Y; Fan J; Yi Z; Hong H; Xie X; Huang QA; Fu J; Ouyang J; Zhao X; Wang Z; Zhu Z
    Biosens Bioelectron; 2024 Jan; 244():115807. PubMed ID: 37948914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.