These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21088765)

  • 41. Pump-free multi-well-based microfluidic system for high-throughput analysis of size-control relative genes in budding yeast.
    Kang X; Jiang L; Chen X; Yuan H; Luo C; Ouyang Q
    Integr Biol (Camb); 2014 Jul; 6(7):685-93. PubMed ID: 24872017
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantitative fluorescence imaging of mitochondria in body wall muscles of Caenorhabditis elegans under hyperglycemic conditions using a microfluidic chip.
    Sofela S; Sahloul S; Bhattacharjee S; Bose A; Usman U; Song YA
    Integr Biol (Camb); 2020 Jun; 12(6):150-160. PubMed ID: 32510148
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A High-Throughput Automated Microfluidic Platform for Calcium Imaging of Taste Sensing.
    Hsiao YH; Hsu CH; Chen C
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27399663
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Digital microfluidics for time-resolved cytotoxicity studies on single non-adherent yeast cells.
    Kumar PT; Vriens K; Cornaglia M; Gijs M; Kokalj T; Thevissen K; Geeraerd A; Cammue BP; Puers R; Lammertyn J
    Lab Chip; 2015 Apr; 15(8):1852-60. PubMed ID: 25710603
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polydimethylsiloxane-polycarbonate Microfluidic Devices for Cell Migration Studies Under Perpendicular Chemical and Oxygen Gradients.
    Chiang HJ; Yeh SL; Peng CC; Liao WH; Tung YC
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287582
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Design and 3D modeling investigation of a microfluidic electrode array for electrical impedance measurement of single yeast cells.
    Geng Y; Zhu Z; Zhang Z; Xu F; Marchisio MA; Wang Z; Pan D; Zhao X; Huang QA
    Electrophoresis; 2021 Oct; 42(20):1996-2009. PubMed ID: 33938013
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microfluidic systems for high-throughput and high-content screening using the nematode Caenorhabditis elegans.
    Cornaglia M; Lehnert T; Gijs MAM
    Lab Chip; 2017 Nov; 17(22):3736-3759. PubMed ID: 28840220
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microfluidic partition with in situ biofabricated semipermeable biopolymer membranes for static gradient generation.
    Luo X; Vo T; Jambi F; Pham P; Choy JS
    Lab Chip; 2016 Sep; 16(19):3815-3823. PubMed ID: 27713976
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microfluidic and Paper-Based Devices for Disease Detection and Diagnostic Research.
    Campbell JM; Balhoff JB; Landwehr GM; Rahman SM; Vaithiyanathan M; Melvin AT
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30213089
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An electrochemically driven poly(dimethylsiloxane) microfluidic actuator: oxygen sensing and programmable flows and pH gradients.
    Mitrovski SM; Nuzzo RG
    Lab Chip; 2005 Jun; 5(6):634-45. PubMed ID: 15915256
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Eliminating air bubble in microfluidic systems utilizing integrated in-line sloped microstructures.
    Huang C; Wippold JA; Stratis-Cullum D; Han A
    Biomed Microdevices; 2020 Oct; 22(4):76. PubMed ID: 33090275
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 3D-printed microfluidic microdissector for high-throughput studies of cellular aging.
    Spivey EC; Xhemalce B; Shear JB; Finkelstein IJ
    Anal Chem; 2014 Aug; 86(15):7406-12. PubMed ID: 24992972
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High throughput single cell counting in droplet-based microfluidics.
    Lu H; Caen O; Vrignon J; Zonta E; El Harrak Z; Nizard P; Baret JC; Taly V
    Sci Rep; 2017 May; 7(1):1366. PubMed ID: 28465615
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multi-step Variable Height Photolithography for Valved Multilayer Microfluidic Devices.
    Brower K; White AK; Fordyce PM
    J Vis Exp; 2017 Jan; (119):. PubMed ID: 28190039
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fast microfluidic temperature control for high resolution live cell imaging.
    Velve Casquillas G; Fu C; Le Berre M; Cramer J; Meance S; Plecis A; Baigl D; Greffet JJ; Chen Y; Piel M; Tran PT
    Lab Chip; 2011 Feb; 11(3):484-9. PubMed ID: 21103458
    [TBL] [Abstract][Full Text] [Related]  

  • 56. PDMS and its suitability for analytical microfluidic devices.
    Kuncová-Kallio J; Kallio PJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2486-9. PubMed ID: 17946118
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The CellClamper: A Convenient Microfluidic Device for Time-Lapse Imaging of Yeast.
    Schmidt GW; Frey O; Rudolf F
    Methods Mol Biol; 2018; 1672():537-555. PubMed ID: 29043647
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microfluidics-integrated time-lapse imaging for analysis of cellular dynamics.
    Albrecht DR; Underhill GH; Resnikoff J; Mendelson A; Bhatia SN; Shah JV
    Integr Biol (Camb); 2010 Jun; 2(5-6):278-87. PubMed ID: 20532320
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Single-cell analysis of mycobacteria using microfluidics and time-lapse microscopy.
    Dhar N; Manina G
    Methods Mol Biol; 2015; 1285():241-56. PubMed ID: 25779320
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rapid prototyping of multichannel microfluidic devices for single-molecule DNA curtain imaging.
    Robison AD; Finkelstein IJ
    Anal Chem; 2014 May; 86(9):4157-63. PubMed ID: 24734940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.