These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 21088795)

  • 1. Multilayer perceptron neural network for flow prediction.
    Araujo P; Astray G; Ferrerio-Lage JA; Mejuto JC; Rodriguez-Suarez JA; Soto B
    J Environ Monit; 2011 Jan; 13(1):35-41. PubMed ID: 21088795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting conductance due to upconing using neural networks.
    Coppola EA; McLane CF; Poulton MM; Szidarovszky F; Magelky RD
    Ground Water; 2005; 43(6):827-36. PubMed ID: 16324004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of short-term water demand prediction model to Seoul.
    Joo CN; Koo JY; Yu MJ
    Water Sci Technol; 2002; 46(6-7):255-61. PubMed ID: 12380999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling flow and sediment transport in a river system using an artificial neural network.
    Yitian L; Gu RR
    Environ Manage; 2003 Jan; 31(1):122-34. PubMed ID: 12447580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A neural network model for predicting aquifer water level elevations.
    Coppola EA; Rana AJ; Poulton MM; Szidarovszky F; Uhl VW
    Ground Water; 2005; 43(2):231-41. PubMed ID: 15819944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Future climate scenarios and rainfall--runoff modelling in the Upper Gallego catchment (Spain).
    Bürger CM; Kolditz O; Fowler HJ; Blenkinsop S
    Environ Pollut; 2007 Aug; 148(3):842-54. PubMed ID: 17428594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique.
    Dogan E; Sengorur B; Koklu R
    J Environ Manage; 2009 Feb; 90(2):1229-35. PubMed ID: 18691805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of artificial neural networks to assess pesticide contamination in shallow groundwater.
    Sahoo GB; Ray C; Mehnert E; Keefer DA
    Sci Total Environ; 2006 Aug; 367(1):234-51. PubMed ID: 16460784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating monthly total nitrogen concentration in streams by using artificial neural network.
    He B; Oki T; Sun F; Komori D; Kanae S; Wang Y; Kim H; Yamazaki D
    J Environ Manage; 2011 Jan; 92(1):172-7. PubMed ID: 20870340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ANN application for water quality forecasting.
    Palani S; Liong SY; Tkalich P
    Mar Pollut Bull; 2008 Sep; 56(9):1586-97. PubMed ID: 18635240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance.
    Mjalli FS; Al-Asheh S; Alfadala HE
    J Environ Manage; 2007 May; 83(3):329-38. PubMed ID: 16806660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of predictive models for determining enterococci levels at Gulf Coast beaches.
    Zhang Z; Deng Z; Rusch KA
    Water Res; 2012 Feb; 46(2):465-74. PubMed ID: 22130001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Total nitrogen and ammonia removal prediction in horizontal subsurface flow constructed wetlands: use of artificial neural networks and development of a design equation.
    Akratos CS; Papaspyros JN; Tsihrintzis VA
    Bioresour Technol; 2009 Jan; 100(2):586-96. PubMed ID: 18786824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of river ecosystem models for Flemish watercourses: case studies in the Zwalm river basin.
    Goethals P; Dedecker A; Raes N; Adriaenssens V; Gabriels W; De Pauw N
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(1):71-86. PubMed ID: 15952431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of Artificial Neural Networks in integrated water management: fiction or future?
    Schulze FH; Wolf H; Jansen HW; van der Veer P
    Water Sci Technol; 2005; 52(9):21-31. PubMed ID: 16445170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hybrid neural-genetic algorithm for reservoir water quality management.
    Kuo JT; Wang YY; Lung WS
    Water Res; 2006 Apr; 40(7):1367-76. PubMed ID: 16545860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water quality modeling to determine minimum instream flow for fish survival in tidal rivers.
    Liu WC; Liu SY; Hsu MH; Kuo AY
    J Environ Manage; 2005 Sep; 76(4):293-308. PubMed ID: 15927355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meta-modeling of the pesticide fate model MACRO for groundwater exposure assessments using artificial neural networks.
    Stenemo F; Lindahl AM; Gärdenäs A; Jarvis N
    J Contam Hydrol; 2007 Aug; 93(1-4):270-83. PubMed ID: 17531347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of artificial neural networks to evaluate the effectiveness of riverbank filtration.
    Sahoo GB; Ray C; Wang JZ; Hubbs SA; Song R; Jasperse J; Seymour D
    Water Res; 2005 Jul; 39(12):2505-16. PubMed ID: 15990145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linked models to assess the impacts of climate change on nitrogen in a Norwegian river basin and FJORD system.
    Kaste Ø; Wright RF; Barkved LJ; Bjerkeng B; Engen-Skaugen T; Magnusson J; Saelthun NR
    Sci Total Environ; 2006 Jul; 365(1-3):200-22. PubMed ID: 16580049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.