BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 21088960)

  • 1. Selective breeding for magnitude of methamphetamine-induced sensitization alters methamphetamine consumption.
    Scibelli AC; McKinnon CS; Reed C; Burkhart-Kasch S; Li N; Baba H; Wheeler JM; Phillips TJ
    Psychopharmacology (Berl); 2011 Apr; 214(4):791-804. PubMed ID: 21088960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral inhibition in mice bred for high vs. low levels of methamphetamine consumption or sensitization.
    Moschak TM; Stang KA; Phillips TJ; Mitchell SH
    Psychopharmacology (Berl); 2012 Jul; 222(2):353-65. PubMed ID: 22311384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity to psychostimulants in mice bred for high and low stimulation to methamphetamine.
    Kamens HM; Burkhart-Kasch S; McKinnon CS; Li N; Reed C; Phillips TJ
    Genes Brain Behav; 2005 Mar; 4(2):110-25. PubMed ID: 15720407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opioid sensitivity in mice selectively bred to consume or not consume methamphetamine.
    Eastwood EC; Phillips TJ
    Addict Biol; 2014 May; 19(3):370-9. PubMed ID: 23145527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol-related traits in mice selectively bred for differential sensitivity to methamphetamine-induced activation.
    Kamens HM; Burkhart-Kasch S; McKinnon CS; Li N; Reed C; Phillips TJ
    Behav Neurosci; 2006 Dec; 120(6):1356-66. PubMed ID: 17201481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A breeding strategy to identify modifiers of high genetic risk for methamphetamine intake.
    Reed C; Stafford AM; Mootz JRK; Baba H; Erk J; Phillips TJ
    Genes Brain Behav; 2021 Feb; 20(2):e12667. PubMed ID: 32424970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methamphetamine drinking microstructure in mice bred to drink high or low amounts of methamphetamine.
    Eastwood EC; Barkley-Levenson AM; Phillips TJ
    Behav Brain Res; 2014 Oct; 272():111-20. PubMed ID: 24978098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetically correlated effects of selective breeding for high and low methamphetamine consumption.
    Wheeler JM; Reed C; Burkhart-Kasch S; Li N; Cunningham CL; Janowsky A; Franken FH; Wiren KM; Hashimoto JG; Scibelli AC; Phillips TJ
    Genes Brain Behav; 2009 Nov; 8(8):758-71. PubMed ID: 19689456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavioral sensitization to drug stimulant effects in C57BL/6J and DBA/2J inbred mice.
    Phillips TJ; Dickinson S; Burkhart-Kasch S
    Behav Neurosci; 1994 Aug; 108(4):789-803. PubMed ID: 7986372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The motivational valence of methamphetamine relates inversely to subsequent methamphetamine self-administration in female C57BL/6J mice.
    Shab G; Fultz EK; Page A; Coelho MA; Brewin LW; Stailey N; Brown CN; Bryant CD; Kippin TE; Szumlinski KK
    Behav Brain Res; 2021 Feb; 398():112959. PubMed ID: 33053382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A role for casein kinase 1 epsilon in the locomotor stimulant response to methamphetamine.
    Bryant CD; Graham ME; Distler MG; Munoz MB; Li D; Vezina P; Sokoloff G; Palmer AA
    Psychopharmacology (Berl); 2009 May; 203(4):703-11. PubMed ID: 19050854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. mu-Opioid receptor knockout mice are insensitive to methamphetamine-induced behavioral sensitization.
    Shen X; Purser C; Tien LT; Chiu CT; Paul IA; Baker R; Loh HH; Ho IK; Ma T
    J Neurosci Res; 2010 Aug; 88(10):2294-302. PubMed ID: 20209629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of stereotyped behaviors during prolonged escalation of methamphetamine self-administration in rats.
    Hadamitzky M; McCunney S; Markou A; Kuczenski R
    Psychopharmacology (Berl); 2012 Oct; 223(3):259-69. PubMed ID: 22526541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The acute effects of multiple doses of methamphetamine on locomotor activity and anxiety-like behavior in adolescent and adult mice.
    Ortman HA; Newby ML; Acevedo J; Siegel JA
    Behav Brain Res; 2021 May; 405():113186. PubMed ID: 33607162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unique genetic factors influence sensitivity to the rewarding and aversive effects of methamphetamine versus cocaine.
    Gubner NR; Reed C; McKinnon CS; Phillips TJ
    Behav Brain Res; 2013 Nov; 256():420-7. PubMed ID: 23994231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissection of corticotropin-releasing factor system involvement in locomotor sensitivity to methamphetamine.
    Giardino WJ; Pastor R; Anacker AM; Spangler E; Cote DM; Li J; Stenzel-Poore MP; Phillips TJ; Ryabinin AE
    Genes Brain Behav; 2011 Feb; 10(1):78-89. PubMed ID: 20731720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Altered locomotor and stereotyped responses to acute methamphetamine in adolescent, maternally separated rats.
    Pritchard LM; Hensleigh E; Lynch S
    Psychopharmacology (Berl); 2012 Sep; 223(1):27-35. PubMed ID: 22414962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of dopamine D1-like receptors in methamphetamine locomotor responses of D2 receptor knockout mice.
    Kelly MA; Low MJ; Rubinstein M; Phillips TJ
    Genes Brain Behav; 2008 Jul; 7(5):568-77. PubMed ID: 18363855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphine intake and the effects of naltrexone and buprenorphine on the acquisition of methamphetamine intake.
    Eastwood EC; Phillips TJ
    Genes Brain Behav; 2014 Feb; 13(2):226-35. PubMed ID: 24152140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trace Amine-Associated Receptor 1 Regulation of Methamphetamine Intake and Related Traits.
    Harkness JH; Shi X; Janowsky A; Phillips TJ
    Neuropsychopharmacology; 2015 Aug; 40(9):2175-84. PubMed ID: 25740289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.