These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 21088960)
1. Selective breeding for magnitude of methamphetamine-induced sensitization alters methamphetamine consumption. Scibelli AC; McKinnon CS; Reed C; Burkhart-Kasch S; Li N; Baba H; Wheeler JM; Phillips TJ Psychopharmacology (Berl); 2011 Apr; 214(4):791-804. PubMed ID: 21088960 [TBL] [Abstract][Full Text] [Related]
2. Behavioral inhibition in mice bred for high vs. low levels of methamphetamine consumption or sensitization. Moschak TM; Stang KA; Phillips TJ; Mitchell SH Psychopharmacology (Berl); 2012 Jul; 222(2):353-65. PubMed ID: 22311384 [TBL] [Abstract][Full Text] [Related]
3. Sensitivity to psychostimulants in mice bred for high and low stimulation to methamphetamine. Kamens HM; Burkhart-Kasch S; McKinnon CS; Li N; Reed C; Phillips TJ Genes Brain Behav; 2005 Mar; 4(2):110-25. PubMed ID: 15720407 [TBL] [Abstract][Full Text] [Related]
4. Opioid sensitivity in mice selectively bred to consume or not consume methamphetamine. Eastwood EC; Phillips TJ Addict Biol; 2014 May; 19(3):370-9. PubMed ID: 23145527 [TBL] [Abstract][Full Text] [Related]
5. Ethanol-related traits in mice selectively bred for differential sensitivity to methamphetamine-induced activation. Kamens HM; Burkhart-Kasch S; McKinnon CS; Li N; Reed C; Phillips TJ Behav Neurosci; 2006 Dec; 120(6):1356-66. PubMed ID: 17201481 [TBL] [Abstract][Full Text] [Related]
6. A breeding strategy to identify modifiers of high genetic risk for methamphetamine intake. Reed C; Stafford AM; Mootz JRK; Baba H; Erk J; Phillips TJ Genes Brain Behav; 2021 Feb; 20(2):e12667. PubMed ID: 32424970 [TBL] [Abstract][Full Text] [Related]
7. Methamphetamine drinking microstructure in mice bred to drink high or low amounts of methamphetamine. Eastwood EC; Barkley-Levenson AM; Phillips TJ Behav Brain Res; 2014 Oct; 272():111-20. PubMed ID: 24978098 [TBL] [Abstract][Full Text] [Related]
8. Genetically correlated effects of selective breeding for high and low methamphetamine consumption. Wheeler JM; Reed C; Burkhart-Kasch S; Li N; Cunningham CL; Janowsky A; Franken FH; Wiren KM; Hashimoto JG; Scibelli AC; Phillips TJ Genes Brain Behav; 2009 Nov; 8(8):758-71. PubMed ID: 19689456 [TBL] [Abstract][Full Text] [Related]
9. Behavioral sensitization to drug stimulant effects in C57BL/6J and DBA/2J inbred mice. Phillips TJ; Dickinson S; Burkhart-Kasch S Behav Neurosci; 1994 Aug; 108(4):789-803. PubMed ID: 7986372 [TBL] [Abstract][Full Text] [Related]
10. The motivational valence of methamphetamine relates inversely to subsequent methamphetamine self-administration in female C57BL/6J mice. Shab G; Fultz EK; Page A; Coelho MA; Brewin LW; Stailey N; Brown CN; Bryant CD; Kippin TE; Szumlinski KK Behav Brain Res; 2021 Feb; 398():112959. PubMed ID: 33053382 [TBL] [Abstract][Full Text] [Related]
11. A role for casein kinase 1 epsilon in the locomotor stimulant response to methamphetamine. Bryant CD; Graham ME; Distler MG; Munoz MB; Li D; Vezina P; Sokoloff G; Palmer AA Psychopharmacology (Berl); 2009 May; 203(4):703-11. PubMed ID: 19050854 [TBL] [Abstract][Full Text] [Related]
12. mu-Opioid receptor knockout mice are insensitive to methamphetamine-induced behavioral sensitization. Shen X; Purser C; Tien LT; Chiu CT; Paul IA; Baker R; Loh HH; Ho IK; Ma T J Neurosci Res; 2010 Aug; 88(10):2294-302. PubMed ID: 20209629 [TBL] [Abstract][Full Text] [Related]
13. Development of stereotyped behaviors during prolonged escalation of methamphetamine self-administration in rats. Hadamitzky M; McCunney S; Markou A; Kuczenski R Psychopharmacology (Berl); 2012 Oct; 223(3):259-69. PubMed ID: 22526541 [TBL] [Abstract][Full Text] [Related]
14. The acute effects of multiple doses of methamphetamine on locomotor activity and anxiety-like behavior in adolescent and adult mice. Ortman HA; Newby ML; Acevedo J; Siegel JA Behav Brain Res; 2021 May; 405():113186. PubMed ID: 33607162 [TBL] [Abstract][Full Text] [Related]
15. Unique genetic factors influence sensitivity to the rewarding and aversive effects of methamphetamine versus cocaine. Gubner NR; Reed C; McKinnon CS; Phillips TJ Behav Brain Res; 2013 Nov; 256():420-7. PubMed ID: 23994231 [TBL] [Abstract][Full Text] [Related]
16. Dissection of corticotropin-releasing factor system involvement in locomotor sensitivity to methamphetamine. Giardino WJ; Pastor R; Anacker AM; Spangler E; Cote DM; Li J; Stenzel-Poore MP; Phillips TJ; Ryabinin AE Genes Brain Behav; 2011 Feb; 10(1):78-89. PubMed ID: 20731720 [TBL] [Abstract][Full Text] [Related]
17. Altered locomotor and stereotyped responses to acute methamphetamine in adolescent, maternally separated rats. Pritchard LM; Hensleigh E; Lynch S Psychopharmacology (Berl); 2012 Sep; 223(1):27-35. PubMed ID: 22414962 [TBL] [Abstract][Full Text] [Related]
18. Role of dopamine D1-like receptors in methamphetamine locomotor responses of D2 receptor knockout mice. Kelly MA; Low MJ; Rubinstein M; Phillips TJ Genes Brain Behav; 2008 Jul; 7(5):568-77. PubMed ID: 18363855 [TBL] [Abstract][Full Text] [Related]
19. Morphine intake and the effects of naltrexone and buprenorphine on the acquisition of methamphetamine intake. Eastwood EC; Phillips TJ Genes Brain Behav; 2014 Feb; 13(2):226-35. PubMed ID: 24152140 [TBL] [Abstract][Full Text] [Related]
20. Trace Amine-Associated Receptor 1 Regulation of Methamphetamine Intake and Related Traits. Harkness JH; Shi X; Janowsky A; Phillips TJ Neuropsychopharmacology; 2015 Aug; 40(9):2175-84. PubMed ID: 25740289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]