These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 21089004)
21. Oxidation of milled wood lignin with laccase, tyrosinase and horseradish peroxidase. Grönqvist S; Viikari L; Niku-Paavola ML; Orlandi M; Canevali C; Buchert J Appl Microbiol Biotechnol; 2005 Jun; 67(4):489-94. PubMed ID: 15602685 [TBL] [Abstract][Full Text] [Related]
22. Laccase from Pycnoporus cinnabarinus and phenolic compounds: can the efficiency of an enzyme mediator for delignifying kenaf pulp be predicted? Andreu G; Vidal T Bioresour Technol; 2013 Mar; 131():536-40. PubMed ID: 23403063 [TBL] [Abstract][Full Text] [Related]
23. Hydrophobic properties conferred to Kraft pulp by a laccase-catalysed treatment with lauryl gallate. Reynaud C; Tapin-Lingua S; Elegir G; Petit-Conil M; Baumberger S J Biotechnol; 2013 Sep; 167(3):302-8. PubMed ID: 23876480 [TBL] [Abstract][Full Text] [Related]
24. Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production. Bruni E; Jensen AP; Angelidaki I Bioresour Technol; 2010 Nov; 101(22):8713-7. PubMed ID: 20638274 [TBL] [Abstract][Full Text] [Related]
25. Novel multienzyme oxidative biocatalyst for lignin bioprocessing. Crestini C; Melone F; Saladino R Bioorg Med Chem; 2011 Aug; 19(16):5071-8. PubMed ID: 21764591 [TBL] [Abstract][Full Text] [Related]
26. Enzyme catalyzed cross-linking of spruce galactoglucomannan improves its applicability in barrier films. Oinonen P; Areskogh D; Henriksson G Carbohydr Polym; 2013 Jun; 95(2):690-6. PubMed ID: 23648031 [TBL] [Abstract][Full Text] [Related]
27. Laccases: blue enzymes for green chemistry. Riva S Trends Biotechnol; 2006 May; 24(5):219-26. PubMed ID: 16574262 [TBL] [Abstract][Full Text] [Related]
28. Reutilization of effluents from laccase-mediator treatments of kraft pulp for biobleaching. Moldes D; Vidal T Bioresour Technol; 2011 Feb; 102(3):3603-6. PubMed ID: 21111614 [TBL] [Abstract][Full Text] [Related]
29. Determination of reactive oxygen species generated in laccase catalyzed oxidation of wood fibers from Chinese fir (Cunninghamia lanceolata) by electron spin resonance spectrometry. Zhou G; Li J; Chen Y; Zhao B; Cao Y; Duan X; Cao Y Bioresour Technol; 2009 Jan; 100(1):505-8. PubMed ID: 18650080 [TBL] [Abstract][Full Text] [Related]
31. Localised laccase activity modulates distribution of lignin polymers in gymnosperm compression wood. Hiraide H; Tobimatsu Y; Yoshinaga A; Lam PY; Kobayashi M; Matsushita Y; Fukushima K; Takabe K New Phytol; 2021 Jun; 230(6):2186-2199. PubMed ID: 33570753 [TBL] [Abstract][Full Text] [Related]
32. Lignin changes after steam explosion and laccase-mediator treatment of eucalyptus wood chips. Martin-Sampedro R; Capanema EA; Hoeger I; Villar JC; Rojas OJ J Agric Food Chem; 2011 Aug; 59(16):8761-9. PubMed ID: 21749069 [TBL] [Abstract][Full Text] [Related]
33. Lignin-modifying enzymes in filamentous basidiomycetes--ecological, functional and phylogenetic review. Lundell TK; Mäkelä MR; Hildén K J Basic Microbiol; 2010 Feb; 50(1):5-20. PubMed ID: 20175122 [TBL] [Abstract][Full Text] [Related]
34. [Effect of wood modification on lignin consumption and synthesis of lignolytic enzymes by the fungus Panus (Lentinus) tigrinus]. Kadimaliev DA; Revin VV; Atykian NA; Samuilov VD Prikl Biokhim Mikrobiol; 2003; 39(5):555-60. PubMed ID: 14593869 [TBL] [Abstract][Full Text] [Related]
35. Reactivity of long chain alkylamines to lignin moieties: implications on hydrophobicity of lignocellulose materials. Kudanga T; Prasetyo EN; Sipilä J; Guebitz GM; Nyanhongo GS J Biotechnol; 2010 Aug; 149(1-2):81-7. PubMed ID: 20600379 [TBL] [Abstract][Full Text] [Related]
36. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Lee SH; Doherty TV; Linhardt RJ; Dordick JS Biotechnol Bioeng; 2009 Apr; 102(5):1368-76. PubMed ID: 19090482 [TBL] [Abstract][Full Text] [Related]
37. Effect of copper, nutrient nitrogen, and wood-supplement on the production of lignin-modifying enzymes by the white-rot fungus Phlebia radiata. Mäkelä MR; Lundell T; Hatakka A; Hildén K Fungal Biol; 2013 Jan; 117(1):62-70. PubMed ID: 23332834 [TBL] [Abstract][Full Text] [Related]
38. Enzymatic treatment of mechanical pulp fibers for improving papermaking properties. Wong KK; Richardson JD; Mansfield SD Biotechnol Prog; 2000; 16(6):1025-9. PubMed ID: 11101330 [TBL] [Abstract][Full Text] [Related]
39. Role of the C-terminus of Pleurotus eryngii Ery4 laccase in determining enzyme structure, catalytic properties and stability. Bleve G; Lezzi C; Spagnolo S; Tasco G; Tufariello M; Casadio R; Mita G; Rampino P; Grieco F Protein Eng Des Sel; 2013 Jan; 26(1):1-13. PubMed ID: 22996391 [TBL] [Abstract][Full Text] [Related]
40. Enhanced lignin biodegradation by a laccase-overexpressed white-rot fungus Polyporus brumalis in the pretreatment of wood chips. Ryu SH; Cho MK; Kim M; Jung SM; Seo JH Appl Biochem Biotechnol; 2013 Nov; 171(6):1525-34. PubMed ID: 23975277 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]