These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 2108969)
1. Cytoskeletal control of centrioles movement during the establishment of polarity in Madin-Darby canine kidney cells. Buendia B; Bré MH; Griffiths G; Karsenti E J Cell Biol; 1990 Apr; 110(4):1123-35. PubMed ID: 2108969 [TBL] [Abstract][Full Text] [Related]
2. Control of microtubule nucleation and stability in Madin-Darby canine kidney cells: the occurrence of noncentrosomal, stable detyrosinated microtubules. Bré MH; Kreis TE; Karsenti E J Cell Biol; 1987 Sep; 105(3):1283-96. PubMed ID: 2888771 [TBL] [Abstract][Full Text] [Related]
3. The polarized distribution of an apical cell surface glycoprotein is maintained by interactions with the cytoskeleton of Madin-Darby canine kidney cells. Ojakian GK; Schwimmer R J Cell Biol; 1988 Dec; 107(6 Pt 1):2377-87. PubMed ID: 3198692 [TBL] [Abstract][Full Text] [Related]
4. [The effect of the disruption of the cytoskeletal elements on uncoupler-induced changes in the centrosome]. Alieva IB; Vorob'ev IA Tsitologiia; 1990; 32(6):620-5. PubMed ID: 2238115 [TBL] [Abstract][Full Text] [Related]
5. Centrosome behavior under the action of a mitochondrial uncoupler and the effect of disruption of cytoskeleton elements on the uncoupler-induced alterations. Alieva IB; Vorobjev IA J Struct Biol; 1994; 113(3):217-24. PubMed ID: 7734246 [TBL] [Abstract][Full Text] [Related]
6. Both microtubules and actin filaments are required for efficient postendocytotic traffic of the polymeric immunoglobulin receptor in polarized Madin-Darby canine kidney cells. Maples CJ; Ruiz WG; Apodaca G J Biol Chem; 1997 Mar; 272(10):6741-51. PubMed ID: 9045707 [TBL] [Abstract][Full Text] [Related]
7. The subcellular organization of Madin-Darby canine kidney cells during the formation of a polarized epithelium. Bacallao R; Antony C; Dotti C; Karsenti E; Stelzer EH; Simons K J Cell Biol; 1989 Dec; 109(6 Pt 1):2817-32. PubMed ID: 2592406 [TBL] [Abstract][Full Text] [Related]
8. Microtubules are involved in the secretion of proteins at the apical cell surface of the polarized epithelial cell, Madin-Darby canine kidney. Parczyk K; Haase W; Kondor-Koch C J Biol Chem; 1989 Oct; 264(28):16837-46. PubMed ID: 2777809 [TBL] [Abstract][Full Text] [Related]
9. Occluding junctions and cytoskeletal components in a cultured transporting epithelium. Meza I; Ibarra G; Sabanero M; Martínez-Palomo A; Cereijido M J Cell Biol; 1980 Dec; 87(3 Pt 1):746-54. PubMed ID: 7193213 [TBL] [Abstract][Full Text] [Related]
10. Microtubules and actin filaments are not critically involved in the biogenesis of epithelial cell surface polarity. Salas PJ; Misek DE; Vega-Salas DE; Gundersen D; Cereijido M; Rodriguez-Boulan E J Cell Biol; 1986 May; 102(5):1853-67. PubMed ID: 2871031 [TBL] [Abstract][Full Text] [Related]
11. Actin microfilaments play a critical role in endocytosis at the apical but not the basolateral surface of polarized epithelial cells. Gottlieb TA; Ivanov IE; Adesnik M; Sabatini DD J Cell Biol; 1993 Feb; 120(3):695-710. PubMed ID: 8381123 [TBL] [Abstract][Full Text] [Related]
12. Development and functions of the cytoskeleton during ciliogenesis in metazoa. Lemullois M; Boisvieux-Ulrich E; Laine MC; Chailley B; Sandoz D Biol Cell; 1988; 63(2):195-208. PubMed ID: 2904829 [TBL] [Abstract][Full Text] [Related]
13. Evidence for an involvement of actin in the positioning and motility of centrosomes. Euteneuer U; Schliwa M J Cell Biol; 1985 Jul; 101(1):96-103. PubMed ID: 4040137 [TBL] [Abstract][Full Text] [Related]
14. Antimicrotubule drugs inhibit the polarized insertion of an intracellular glycoprotein pool into the apical membrane of Madin-Darby canine kidney (MDCK) cells. Ojakian GK; Schwimmer R J Cell Sci; 1992 Nov; 103 ( Pt 3)():677-87. PubMed ID: 1478964 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of membrane-skeleton (fodrin) organization during development of polarity in Madin-Darby canine kidney epithelial cells. Nelson WJ; Veshnock PJ J Cell Biol; 1986 Nov; 103(5):1751-65. PubMed ID: 3023391 [TBL] [Abstract][Full Text] [Related]
16. Changes in membrane-microfilament interaction in intercellular adherens junctions upon removal of extracellular Ca2+ ions. Volberg T; Geiger B; Kartenbeck J; Franke WW J Cell Biol; 1986 May; 102(5):1832-42. PubMed ID: 3084500 [TBL] [Abstract][Full Text] [Related]
17. Relationship between movement and aggregation of centrioles in syncytia and formation of microtubule bundles. Wang E; Connolly JA; Kalnins VI; Choppin PW Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5719-23. PubMed ID: 293675 [TBL] [Abstract][Full Text] [Related]
18. Centrosome and microtubules behavior in the cytoplasts. Gorgidze LA; Vorobjev IA J Submicrosc Cytol Pathol; 1995 Jul; 27(3):381-9. PubMed ID: 7671218 [TBL] [Abstract][Full Text] [Related]
19. Centrioles, microtubules and microfilaments in activated mononuclear and multinucleate macrophages from rat peritoneum: electron-microscopic and immunofluorescence microscopic studies. Cain H; Kraus B; Fringes B; Osborn M; Weber K J Pathol; 1981 Apr; 133(4):301-23. PubMed ID: 7017096 [TBL] [Abstract][Full Text] [Related]
20. The cortical microfilament system of lymphoblasts displays a periodic oscillatory activity in the absence of microtubules: implications for cell polarity. Bornens M; Paintrand M; Celati C J Cell Biol; 1989 Sep; 109(3):1071-83. PubMed ID: 2570076 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]