BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 21090111)

  • 1. [Effect of pH on growth and lipid content of Chlorella vulgaris cultured in biogas slurry].
    Wang C; Li H; Wang Q; Wei P
    Sheng Wu Gong Cheng Xue Bao; 2010 Aug; 26(8):1074-9. PubMed ID: 21090111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris].
    Zheng H; Gao Z; Zhang Q; Huang H; Ji X; Sun H; Dou C
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):436-44. PubMed ID: 21650025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions.
    Liang Y; Sarkany N; Cui Y
    Biotechnol Lett; 2009 Jul; 31(7):1043-9. PubMed ID: 19322523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions.
    Lv JM; Cheng LH; Xu XH; Zhang L; Chen HL
    Bioresour Technol; 2010 Sep; 101(17):6797-804. PubMed ID: 20456951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of sodium bicarbonate on cell growth, lipid accumulation, and morphology of Chlorella vulgaris.
    Li J; Li C; Lan CQ; Liao D
    Microb Cell Fact; 2018 Jul; 17(1):111. PubMed ID: 29986703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of iron on growth and lipid accumulation in Chlorella vulgaris.
    Liu ZY; Wang GC; Zhou BC
    Bioresour Technol; 2008 Jul; 99(11):4717-22. PubMed ID: 17993270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium.
    Feng Y; Li C; Zhang D
    Bioresour Technol; 2011 Jan; 102(1):101-5. PubMed ID: 20620053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris.
    Bhola V; Desikan R; Santosh SK; Subburamu K; Sanniyasi E; Bux F
    J Biosci Bioeng; 2011 Mar; 111(3):377-82. PubMed ID: 21185776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris.
    Münkel R; Schmid-Staiger U; Werner A; Hirth T
    Biotechnol Bioeng; 2013 Nov; 110(11):2882-93. PubMed ID: 23616347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High pH-induced flocculation-sedimentation and effect of supernatant reuse on growth rate and lipid productivity of Scenedesmus obliquus and Chlorella vulgaris.
    Castrillo M; Lucas-Salas LM; Rodríguez-Gil C; Martínez D
    Bioresour Technol; 2013 Jan; 128():324-9. PubMed ID: 23201513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31.
    Yeh KL; Chang JS
    Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris.
    Soštarič M; Klinar D; Bricelj M; Golob J; Berovič M; Likozar B
    N Biotechnol; 2012 Feb; 29(3):325-31. PubMed ID: 22178401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock.
    Cheirsilp B; Suwannarat W; Niyomdecha R
    N Biotechnol; 2011 Jul; 28(4):362-8. PubMed ID: 21255692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocapture of CO₂ by Different Microalgal-Based Technologies for Biogas Upgrading and Simultaneous Biogas Slurry Purification under Various Light Intensities and Photoperiods.
    Guo P; Zhang Y; Zhao Y
    Int J Environ Res Public Health; 2018 Mar; 15(3):. PubMed ID: 29543784
    [No Abstract]   [Full Text] [Related]  

  • 17. Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields.
    Zhang Z; Ji H; Gong G; Zhang X; Tan T
    Bioresour Technol; 2014 Jul; 164():93-9. PubMed ID: 24841576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Life-cycle assessment of microalgae culture coupled to biogas production.
    Collet P; Hélias A; Lardon L; Ras M; Goy RA; Steyer JP
    Bioresour Technol; 2011 Jan; 102(1):207-14. PubMed ID: 20674343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris.
    Griffiths MJ; van Hille RP; Harrison ST
    Appl Microbiol Biotechnol; 2014 Mar; 98(5):2345-56. PubMed ID: 24413971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen and phosphorus removal coupled with carbohydrate production by five microalgae cultures cultivated in biogas slurry.
    Tan F; Wang Z; Zhouyang S; Li H; Xie Y; Wang Y; Zheng Y; Li Q
    Bioresour Technol; 2016 Dec; 221():385-393. PubMed ID: 27660989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.