These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 21090111)
1. [Effect of pH on growth and lipid content of Chlorella vulgaris cultured in biogas slurry]. Wang C; Li H; Wang Q; Wei P Sheng Wu Gong Cheng Xue Bao; 2010 Aug; 26(8):1074-9. PubMed ID: 21090111 [TBL] [Abstract][Full Text] [Related]
2. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris]. Zheng H; Gao Z; Zhang Q; Huang H; Ji X; Sun H; Dou C Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):436-44. PubMed ID: 21650025 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Yeh KL; Chang JS Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209 [TBL] [Abstract][Full Text] [Related]
4. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Liang Y; Sarkany N; Cui Y Biotechnol Lett; 2009 Jul; 31(7):1043-9. PubMed ID: 19322523 [TBL] [Abstract][Full Text] [Related]
5. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Lv JM; Cheng LH; Xu XH; Zhang L; Chen HL Bioresour Technol; 2010 Sep; 101(17):6797-804. PubMed ID: 20456951 [TBL] [Abstract][Full Text] [Related]
6. Effects of sodium bicarbonate on cell growth, lipid accumulation, and morphology of Chlorella vulgaris. Li J; Li C; Lan CQ; Liao D Microb Cell Fact; 2018 Jul; 17(1):111. PubMed ID: 29986703 [TBL] [Abstract][Full Text] [Related]
7. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Liu ZY; Wang GC; Zhou BC Bioresour Technol; 2008 Jul; 99(11):4717-22. PubMed ID: 17993270 [TBL] [Abstract][Full Text] [Related]
8. Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Feng Y; Li C; Zhang D Bioresour Technol; 2011 Jan; 102(1):101-5. PubMed ID: 20620053 [TBL] [Abstract][Full Text] [Related]
9. Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris. Bhola V; Desikan R; Santosh SK; Subburamu K; Sanniyasi E; Bux F J Biosci Bioeng; 2011 Mar; 111(3):377-82. PubMed ID: 21185776 [TBL] [Abstract][Full Text] [Related]
10. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris. Münkel R; Schmid-Staiger U; Werner A; Hirth T Biotechnol Bioeng; 2013 Nov; 110(11):2882-93. PubMed ID: 23616347 [TBL] [Abstract][Full Text] [Related]
11. High pH-induced flocculation-sedimentation and effect of supernatant reuse on growth rate and lipid productivity of Scenedesmus obliquus and Chlorella vulgaris. Castrillo M; Lucas-Salas LM; Rodríguez-Gil C; Martínez D Bioresour Technol; 2013 Jan; 128():324-9. PubMed ID: 23201513 [TBL] [Abstract][Full Text] [Related]
12. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Yeh KL; Chang JS Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073 [TBL] [Abstract][Full Text] [Related]
13. Growth, lipid extraction and thermal degradation of the microalga Chlorella vulgaris. Soštarič M; Klinar D; Bricelj M; Golob J; Berovič M; Likozar B N Biotechnol; 2012 Feb; 29(3):325-31. PubMed ID: 22178401 [TBL] [Abstract][Full Text] [Related]
14. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. Cheirsilp B; Suwannarat W; Niyomdecha R N Biotechnol; 2011 Jul; 28(4):362-8. PubMed ID: 21255692 [TBL] [Abstract][Full Text] [Related]
15. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis. Zheng H; Gao Z; Yin F; Ji X; Huang H Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706 [TBL] [Abstract][Full Text] [Related]
16. Biocapture of CO₂ by Different Microalgal-Based Technologies for Biogas Upgrading and Simultaneous Biogas Slurry Purification under Various Light Intensities and Photoperiods. Guo P; Zhang Y; Zhao Y Int J Environ Res Public Health; 2018 Mar; 15(3):. PubMed ID: 29543784 [No Abstract] [Full Text] [Related]
17. Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields. Zhang Z; Ji H; Gong G; Zhang X; Tan T Bioresour Technol; 2014 Jul; 164():93-9. PubMed ID: 24841576 [TBL] [Abstract][Full Text] [Related]
19. The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Griffiths MJ; van Hille RP; Harrison ST Appl Microbiol Biotechnol; 2014 Mar; 98(5):2345-56. PubMed ID: 24413971 [TBL] [Abstract][Full Text] [Related]
20. Nitrogen and phosphorus removal coupled with carbohydrate production by five microalgae cultures cultivated in biogas slurry. Tan F; Wang Z; Zhouyang S; Li H; Xie Y; Wang Y; Zheng Y; Li Q Bioresour Technol; 2016 Dec; 221():385-393. PubMed ID: 27660989 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]