These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 21090585)

  • 1. Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy.
    Hatab NA; Hsueh CH; Gaddis AL; Retterer ST; Li JH; Eres G; Zhang Z; Gu B
    Nano Lett; 2010 Dec; 10(12):4952-5. PubMed ID: 21090585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing Electromagnetic Hotspots in Plasmonic Bowtie Nanoantennae.
    Dodson S; Haggui M; Bachelot R; Plain J; Li S; Xiong Q
    J Phys Chem Lett; 2013 Feb; 4(3):496-501. PubMed ID: 26281746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced photoluminescence and Raman spectroscopy of single molecule confined in coupled Au bowtie nanoantenna.
    Pei H; Peng W; Zhang J; Zhao J; Qi J; Yu C; Li J; Wei Y
    Nanotechnology; 2024 Jan; 35(15):. PubMed ID: 38176065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA Origami Directed Assembly of Gold Bowtie Nanoantennas for Single-Molecule Surface-Enhanced Raman Scattering.
    Zhan P; Wen T; Wang ZG; He Y; Shi J; Wang T; Liu X; Lu G; Ding B
    Angew Chem Int Ed Engl; 2018 Mar; 57(11):2846-2850. PubMed ID: 29377456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane.
    Kühler P; Weber M; Lohmüller T
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):8947-52. PubMed ID: 24896979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering.
    Lee H; Lee JH; Jin SM; Suh YD; Nam JM
    Nano Lett; 2013; 13(12):6113-21. PubMed ID: 24256433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes.
    Lee JH; You MH; Kim GH; Nam JM
    Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bridged-bowtie and cross bridged-bowtie nanohole arrays as SERS substrates with hotspot tunability and multi-wavelength SERS response.
    Gupta N; Dhawan A
    Opt Express; 2018 Jul; 26(14):17899-17915. PubMed ID: 30114073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement.
    Deng YH; Yang ZJ; He J
    Opt Express; 2018 Nov; 26(24):31116-31128. PubMed ID: 30650702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.
    Nam JM; Oh JW; Lee H; Suh YD
    Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable optical response of bowtie nanoantenna arrays on thermoplastic substrates.
    Sharac N; Sharma H; Veysi M; Sanderson RN; Khine M; Capolino F; Ragan R
    Nanotechnology; 2016 Mar; 27(10):105302. PubMed ID: 26867001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of electron dose on positive polymethyl methacrylate resist for nanolithography of gold bowtie nanoantennas.
    Campbell C; Casey A; Triplett G
    Heliyon; 2022 May; 8(5):e09475. PubMed ID: 35663762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dark-Field Scattering and Local SERS Mapping from Plasmonic Aluminum Bowtie Antenna Array.
    Dao TD; Hoang CV; Nishio N; Yamamoto N; Ohi A; Nabatame T; Aono M; Nagao T
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31337078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy.
    Kühler P; Roller EM; Schreiber R; Liedl T; Lohmüller T; Feldmann J
    Nano Lett; 2014 May; 14(5):2914-9. PubMed ID: 24754830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uniform Periodic Bowtie SERS Substrate with Narrow Nanogaps Obtained by Monitored Pulsed Electrodeposition.
    Yao X; Jiang S; Luo S; Liu BW; Huang TX; Hu S; Zhu J; Wang X; Ren B
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36505-36512. PubMed ID: 32686400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing Single-Molecule Fluorescence Spectroscopy with Simple and Robust Hybrid Nanoapertures.
    Kotnala A; Ding H; Zheng Y
    ACS Photonics; 2021 Jun; 8(6):1673-1682. PubMed ID: 35445142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy.
    Kleinman SL; Sharma B; Blaber MG; Henry AI; Valley N; Freeman RG; Natan MJ; Schatz GC; Van Duyne RP
    J Am Chem Soc; 2013 Jan; 135(1):301-8. PubMed ID: 23214430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates.
    Jubb AM; Jiao Y; Eres G; Retterer ST; Gu B
    Nanoscale; 2016 Mar; 8(10):5641-8. PubMed ID: 26893035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method.
    Kaniber M; Schraml K; Regler A; Bartl J; Glashagen G; Flassig F; Wierzbowski J; Finley JJ
    Sci Rep; 2016 Mar; 6():23203. PubMed ID: 27005986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the in-Plane Near-Field Enhancement Limit in a Plasmonic Particle-on-Film Nanocavity with Surface-Enhanced Raman Spectroscopy of Graphene.
    Liu D; Wu T; Zhang Q; Wang X; Guo X; Su Y; Zhu Y; Shao M; Chen H; Luo Y; Lei D
    ACS Nano; 2019 Jul; 13(7):7644-7654. PubMed ID: 31244032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.