These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 21090670)

  • 41. n-Type silicon photoelectrochemistry in methanol: Design of a 10.1% efficient semiconductor/liquid junction solar cell.
    Gronet CM; Lewis NS; Cogan G; Gibbons J
    Proc Natl Acad Sci U S A; 1983 Feb; 80(4):1152-6. PubMed ID: 16593280
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deposition of a thin film of TiOx from a titanium metal target as novel blocking layers at conducting glass/TiO2 interfaces in ionic liquid mesoscopic TiO2 dye-sensitized solar cells.
    Xia J; Masaki N; Jiang K; Yanagida S
    J Phys Chem B; 2006 Dec; 110(50):25222-8. PubMed ID: 17165966
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A waferscale Si wire solar cell using radial and bulk p-n junctions.
    Jung JY; Guo Z; Jee SW; Um HD; Park KT; Hyun MS; Yang JM; Lee JH
    Nanotechnology; 2010 Nov; 21(44):445303. PubMed ID: 20935359
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Wet-Chemical Preparation of Silicon Tunnel Oxides for Transparent Passivated Contacts in Crystalline Silicon Solar Cells.
    Köhler M; Pomaska M; Lentz F; Finger F; Rau U; Ding K
    ACS Appl Mater Interfaces; 2018 May; 10(17):14259-14263. PubMed ID: 29664611
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells.
    Huang CY; Wang DY; Wang CH; Chen YT; Wang YT; Jiang YT; Yang YJ; Chen CC; Chen YF
    ACS Nano; 2010 Oct; 4(10):5849-54. PubMed ID: 20873763
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancement of open-circuit voltage and the fill factor in CdTe nanocrystal solar cells by using interface materials.
    Zhu J; Yang Y; Gao Y; Qin D; Wu H; Hou L; Huang W
    Nanotechnology; 2014 Sep; 25(36):365203. PubMed ID: 25140734
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thickness dependence of plasmonic charge carrier generation in ultrathin a-Si:H layers for solar cells.
    Gusak V; Kasemo B; Hägglund C
    ACS Nano; 2011 Aug; 5(8):6218-25. PubMed ID: 21732654
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of Ag and SiO2 Nanoparticles for Light Trapping Applications in Silicon Thin Film Solar Cells.
    Theuring M; Wang PH; Vehse M; Steenhoff V; von Maydell K; Agert C; Brolo AG
    J Phys Chem Lett; 2014 Oct; 5(19):3302-6. PubMed ID: 26278435
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Efficient optical absorption in thin-film solar cells.
    Yang L; Xuan Y; Tan J
    Opt Express; 2011 Sep; 19 Suppl 5():A1165-74. PubMed ID: 21935260
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A photovoltaic device structure based on internal electron emission.
    McFarland EW; Tang J
    Nature; 2003 Feb; 421(6923):616-8. PubMed ID: 12571591
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimization of slow light one-dimensional Bragg structures for photocurrent enhancement in solar cells.
    Deparis O; El Daif O
    Opt Lett; 2012 Oct; 37(20):4230-2. PubMed ID: 23073420
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Water splitting with silver chloride photoanodes and amorphous silicon solar cells.
    Currao A; Reddy VR; van Veen MK; Schropp RE; Calzaferri G
    Photochem Photobiol Sci; 2004; 3(11-12):1017-25. PubMed ID: 15570389
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanisms of enhanced optical absorption for ultrathin silicon solar microcells with an integrated nanostructured backside reflector.
    Corcoran CJ; Kang S; Li L; Guo X; Chanda D; Nuzzo RG
    ACS Appl Mater Interfaces; 2013 May; 5(10):4239-46. PubMed ID: 23586736
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Broadband absorption enhancement in a-Si:H thin-film solar cells sandwiched by pyramidal nanostructured arrays.
    Li C; Xia L; Gao H; Shi R; Sun C; Shi H; Du C
    Opt Express; 2012 Sep; 20 Suppl 5():A589-96. PubMed ID: 23037526
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface plasmon effect of Ag nanodots embedded in amorphous Si window layers deposited on Si solar cells.
    Park S; Ji H; Kim MJ; Peck JH; Kim K
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9210-8. PubMed ID: 25971039
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Photoelectrochemistry of Ultrathin, Semitransparent, and Catalytic Gold Films Electrodeposited Epitaxially onto n-Silicon (111).
    Chen Q; Switzer JA
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21365-21371. PubMed ID: 29856594
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High-performance silicon nanohole solar cells.
    Peng KQ; Wang X; Li L; Wu XL; Lee ST
    J Am Chem Soc; 2010 May; 132(20):6872-3. PubMed ID: 20426468
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ladder-type oligo-p-phenylene-containing copolymers with high open-circuit voltages and ambient photovoltaic activity.
    Zheng Q; Jung BJ; Sun J; Katz HE
    J Am Chem Soc; 2010 Apr; 132(15):5394-404. PubMed ID: 20102195
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Polymer solar cells based on very narrow-bandgap polyplatinynes with photocurrents extended into the near-infrared region.
    Wang XZ; Wong WY; Cheung KY; Fung MK; Djurisić AB; Chan WK
    Dalton Trans; 2008 Oct; (40):5484-94. PubMed ID: 19082032
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance.
    Liang Y; Yu L
    Acc Chem Res; 2010 Sep; 43(9):1227-36. PubMed ID: 20853907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.