These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 21090674)

  • 41. Plasmonic films based on colloidal lithography.
    Ai B; Yu Y; Möhwald H; Zhang G; Yang B
    Adv Colloid Interface Sci; 2014 Apr; 206():5-16. PubMed ID: 24321859
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Capillary-driven automatic packaging.
    Ding Y; Hong L; Nie B; Lam KS; Pan T
    Lab Chip; 2011 Apr; 11(8):1464-9. PubMed ID: 21380434
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks.
    Kosiorek A; Kandulski W; Glaczynska H; Giersig M
    Small; 2005 Apr; 1(4):439-44. PubMed ID: 17193469
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fabrication of hydrogel microstructures using polymerization controlled by microcontact printing (PCmicroCP).
    Biswal D; Chirra HD; Hilt JZ
    Biomed Microdevices; 2008 Apr; 10(2):213-9. PubMed ID: 17876708
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing.
    Camden JP; Dieringer JA; Zhao J; Van Duyne RP
    Acc Chem Res; 2008 Dec; 41(12):1653-61. PubMed ID: 18630932
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Field-assisted nanopatterning of metals, metal oxides and metal salts.
    Liu JF; Miller GP
    Nanotechnology; 2009 Feb; 20(5):055303. PubMed ID: 19417344
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Vertically oriented, three-dimensionally tapered deep-subwavelength metallic nanohole arrays developed by photofluidization lithography.
    Lee SA; Kang HS; Park JK; Lee S
    Adv Mater; 2014 Nov; 26(44):7521-8. PubMed ID: 25250689
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Self-aligned deterministic coupling of single quantum emitter to nanofocused plasmonic modes.
    Gong SH; Kim JH; Ko YH; Rodriguez C; Shin J; Lee YH; Dang le S; Zhang X; Cho YH
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5280-5. PubMed ID: 25870303
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Digital microfluidics using soft lithography.
    Urbanski JP; Thies W; Rhodes C; Amarasinghe S; Thorsen T
    Lab Chip; 2006 Jan; 6(1):96-104. PubMed ID: 16372075
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design and electrochemical fabrication of gold binary ordered micro/nanostructured porous arrays via step-by-step colloidal lithography.
    Duan G; Cai W; Luo Y; Lv F; Yang J; Li Y
    Langmuir; 2009 Mar; 25(5):2558-62. PubMed ID: 19437740
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Arrays of Plasmonic Nanoparticle Dimers with Defined Nanogap Spacers.
    Jeong HH; Adams MC; Günther JP; Alarcón-Correa M; Kim I; Choi E; Miksch C; Mark AF; Mark AG; Fischer P
    ACS Nano; 2019 Oct; 13(10):11453-11459. PubMed ID: 31539228
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microcontact printing-based fabrication of digital microfluidic devices.
    Watson MW; Abdelgawad M; Ye G; Yonson N; Trottier J; Wheeler AR
    Anal Chem; 2006 Nov; 78(22):7877-85. PubMed ID: 17105183
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hyperspectral imaging with scanning near-field optical microscopy: applications in plasmonics.
    Bouillard JS; Vilain S; Dickson W; Zayats AV
    Opt Express; 2010 Aug; 18(16):16513-9. PubMed ID: 20721040
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhancement of pattern quality in maskless plasmonic lithography via spatial loss modulation.
    Han D; Deng S; Ye T; Wei Y
    Microsyst Nanoeng; 2023; 9():40. PubMed ID: 37007604
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Directional Superficial Photofluidization for Deterministic Shaping of Complex 3D Architectures.
    Lee S; Kang HS; Ambrosio A; Park JK; Marrucci L
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8209-17. PubMed ID: 25816857
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy.
    Wells SM; Retterer SD; Oran JM; Sepaniak MJ
    ACS Nano; 2009 Dec; 3(12):3845-53. PubMed ID: 19911835
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly charged ion beam applied to lithography technique.
    Momota S; Nojiri Y; Taniguchi J; Miyamoto I; Morita N; Kawasegi N
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 2):02C302. PubMed ID: 18315242
    [TBL] [Abstract][Full Text] [Related]  

  • 58. High efficiency plasmonic probe design for parallel near-field optics applications.
    Rui G; Chen W; Zhan Q
    Opt Express; 2011 Mar; 19(6):5187-95. PubMed ID: 21445154
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diamond-structured photonic crystals.
    Maldovan M; Thomas EL
    Nat Mater; 2004 Sep; 3(9):593-600. PubMed ID: 15343291
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spontaneous formation of nanoparticle stripe patterns through dewetting.
    Huang J; Kim F; Tao AR; Connor S; Yang P
    Nat Mater; 2005 Dec; 4(12):896-900. PubMed ID: 16284621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.