These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 21090690)
1. Dynamics of light-induced activation in the PAS domain proteins LOV2 and PYP probed by time-resolved tryptophan fluorescence. Hoersch D; Bolourchian F; Otto H; Heyn MP; Bogomolni RA Biochemistry; 2010 Dec; 49(51):10811-7. PubMed ID: 21090690 [TBL] [Abstract][Full Text] [Related]
2. Different role of the Jalpha helix in the light-induced activation of the LOV2 domains in various phototropins. Koyama T; Iwata T; Yamamoto A; Sato Y; Matsuoka D; Tokutomi S; Kandori H Biochemistry; 2009 Aug; 48(32):7621-8. PubMed ID: 19601589 [TBL] [Abstract][Full Text] [Related]
4. A LOV story: the signaling state of the phot1 LOV2 photocycle involves chromophore-triggered protein structure relaxation, as probed by far-UV time-resolved optical rotatory dispersion spectroscopy. Chen E; Swartz TE; Bogomolni RA; Kliger DS Biochemistry; 2007 Apr; 46(15):4619-24. PubMed ID: 17371048 [TBL] [Abstract][Full Text] [Related]
5. Time-resolved spectroscopy of dye-labeled photoactive yellow protein suggests a pathway of light-induced structural changes in the N-terminal cap. Hoersch D; Otto H; Cusanovich MA; Heyn MP Phys Chem Chem Phys; 2009 Jul; 11(26):5437-44. PubMed ID: 19551213 [TBL] [Abstract][Full Text] [Related]
6. Blue-light-induced unfolding of the Jα helix allows for the dimerization of aureochrome-LOV from the diatom Phaeodactylum tricornutum. Herman E; Sachse M; Kroth PG; Kottke T Biochemistry; 2013 May; 52(18):3094-101. PubMed ID: 23621750 [TBL] [Abstract][Full Text] [Related]
7. Time-resolved single tryptophan fluorescence in photoactive yellow protein monitors changes in the chromophore structure during the photocycle via energy transfer. Otto H; Hoersch D; Meyer TE; Cusanovich MA; Heyn MP Biochemistry; 2005 Dec; 44(51):16804-16. PubMed ID: 16363794 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of the amino-terminal and carboxyl-terminal helices of Arabidopsis phototropin 1 LOV2 studied by the transient grating. Takeda K; Nakasone Y; Zikihara K; Tokutomi S; Terazima M J Phys Chem B; 2013 Dec; 117(49):15606-13. PubMed ID: 23931584 [TBL] [Abstract][Full Text] [Related]
9. Regulatory mechanism of the light-activable allosteric switch LOV-TAP for the control of DNA binding: a computer simulation study. Peter E; Dick B; Baeurle SA Proteins; 2013 Mar; 81(3):394-405. PubMed ID: 23042418 [TBL] [Abstract][Full Text] [Related]
10. Structural water cluster as a possible proton acceptor in the adduct decay reaction of oat phototropin 1 LOV2 domain. Chan RH; Bogomolni RA J Phys Chem B; 2012 Sep; 116(35):10609-16. PubMed ID: 22845056 [TBL] [Abstract][Full Text] [Related]
11. Coiled-coil dimerization of the LOV2 domain of the blue-light photoreceptor phototropin 1 from Arabidopsis thaliana. Halavaty AS; Moffat K Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Dec; 69(Pt 12):1316-21. PubMed ID: 24316821 [TBL] [Abstract][Full Text] [Related]
12. Blue light induces global and localized conformational changes in the kinase domain of full-length phototropin. Pfeifer A; Mathes T; Lu Y; Hegemann P; Kottke T Biochemistry; 2010 Feb; 49(5):1024-32. PubMed ID: 20052995 [TBL] [Abstract][Full Text] [Related]
13. Unraveling the Mechanism of a LOV Domain Optogenetic Sensor: A Glutamine Lever Induces Unfolding of the Jα Helix. Iuliano JN; Collado JT; Gil AA; Ravindran PT; Lukacs A; Shin S; Woroniecka HA; Adamczyk K; Aramini JM; Edupuganti UR; Hall CR; Greetham GM; Sazanovich IV; Clark IP; Daryaee T; Toettcher JE; French JB; Gardner KH; Simmerling CL; Meech SR; Tonge PJ ACS Chem Biol; 2020 Oct; 15(10):2752-2765. PubMed ID: 32880430 [TBL] [Abstract][Full Text] [Related]
14. Allosterically regulated unfolding of the A'α helix exposes the dimerization site of the blue-light-sensing aureochrome-LOV domain. Herman E; Kottke T Biochemistry; 2015 Feb; 54(7):1484-92. PubMed ID: 25621532 [TBL] [Abstract][Full Text] [Related]
15. Signaling mechanisms of LOV domains: new insights from molecular dynamics studies. Freddolino PL; Gardner KH; Schulten K Photochem Photobiol Sci; 2013 Jul; 12(7):1158-70. PubMed ID: 23407663 [TBL] [Abstract][Full Text] [Related]
16. Unfolding of the C-Terminal Jα Helix in the LOV2 Photoreceptor Domain Observed by Time-Resolved Vibrational Spectroscopy. Konold PE; Mathes T; Weiβenborn J; Groot ML; Hegemann P; Kennis JT J Phys Chem Lett; 2016 Sep; 7(17):3472-6. PubMed ID: 27537211 [TBL] [Abstract][Full Text] [Related]
18. Role of Phe1010 in light-induced structural changes of the neo1-LOV2 domain of Adiantum. Yamamoto A; Iwata T; Tokutomi S; Kandori H Biochemistry; 2008 Jan; 47(3):922-8. PubMed ID: 18163650 [TBL] [Abstract][Full Text] [Related]
19. Conformational heterogeneity and propagation of structural changes in the LOV2/Jalpha domain from Avena sativa phototropin 1 as recorded by temperature-dependent FTIR spectroscopy. Alexandre MT; van Grondelle R; Hellingwerf KJ; Kennis JT Biophys J; 2009 Jul; 97(1):238-47. PubMed ID: 19580761 [TBL] [Abstract][Full Text] [Related]
20. Chromophore exchange in the LOV2 domain of the plant photoreceptor phototropin1 from oat. Dürr H; Salomon M; Rüdiger W Biochemistry; 2005 Mar; 44(8):3050-5. PubMed ID: 15723549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]