BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 21090815)

  • 21. Crystal structure of NAD(P)H:flavin oxidoreductase from Escherichia coli.
    Ingelman M; Ramaswamy S; Nivière V; Fontecave M; Eklund H
    Biochemistry; 1999 Jun; 38(22):7040-9. PubMed ID: 10353815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of hydrogenase II from the hyperthermophilic archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction.
    Ma K; Weiss R; Adams MW
    J Bacteriol; 2000 Apr; 182(7):1864-71. PubMed ID: 10714990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of a new member of the flavoprotein disulfide reductase family of enzymes from Mycobacterium tuberculosis.
    Argyrou A; Vetting MW; Blanchard JS
    J Biol Chem; 2004 Dec; 279(50):52694-702. PubMed ID: 15456792
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families.
    Bordo D; Deriu D; Colnaghi R; Carpen A; Pagani S; Bolognesi M
    J Mol Biol; 2000 May; 298(4):691-704. PubMed ID: 10788330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coenzyme A-disulfide reductase from Staphylococcus aureus: evidence for asymmetric behavior on interaction with pyridine nucleotides.
    Luba J; Charrier V; Claiborne A
    Biochemistry; 1999 Mar; 38(9):2725-37. PubMed ID: 10052943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of Caenorhabditis elegans isovaleryl-CoA dehydrogenase and structural comparison with other acyl-CoA dehydrogenases.
    Mohsen AW; Navarette B; Vockley J
    Mol Genet Metab; 2001 Jun; 73(2):126-37. PubMed ID: 11386848
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cysteine as a modulator residue in the active site of xenobiotic reductase A: a structural, thermodynamic and kinetic study.
    Spiegelhauer O; Mende S; Dickert F; Knauer SH; Ullmann GM; Dobbek H
    J Mol Biol; 2010 Apr; 398(1):66-82. PubMed ID: 20206186
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of human isovaleryl-CoA dehydrogenase at 2.6 A resolution: structural basis for substrate specificity,
    Tiffany KA; Roberts DL; Wang M; Paschke R; Mohsen AW; Vockley J; Kim JJ
    Biochemistry; 1997 Jul; 36(28):8455-64. PubMed ID: 9214289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure of the flavin reductase component (HpaC) of 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8: Structural basis for the flavin affinity.
    Kim SH; Hisano T; Iwasaki W; Ebihara A; Miki K
    Proteins; 2008 Feb; 70(3):718-30. PubMed ID: 17729270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression and characterization of a functional canine variant of cytochrome b5 reductase.
    Roma GW; Crowley LJ; Barber MJ
    Arch Biochem Biophys; 2006 Aug; 452(1):69-82. PubMed ID: 16814740
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of a new periplasmic single-domain rhodanese encoded by a sulfur-regulated gene in a hyperthermophilic bacterium Aquifex aeolicus.
    Giuliani MC; Jourlin-Castelli C; Leroy G; Hachani A; Giudici-Orticoni MT
    Biochimie; 2010 Apr; 92(4):388-97. PubMed ID: 20060433
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies on the interaction of NADPH with Rhodobacter sphaeroides biotin sulfoxide reductase.
    Nelson KJ; Rajagopalan KV
    Biochemistry; 2004 Sep; 43(35):11226-37. PubMed ID: 15366932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Histidine 61: an important heme ligand in the soluble fumarate reductase from Shewanella frigidimarina.
    Rothery EL; Mowat CG; Miles CS; Walkinshaw MD; Reid GA; Chapman SK
    Biochemistry; 2003 Nov; 42(45):13160-9. PubMed ID: 14609326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chloramphenicol biosynthesis: the structure of CmlS, a flavin-dependent halogenase showing a covalent flavin-aspartate bond.
    Podzelinska K; Latimer R; Bhattacharya A; Vining LC; Zechel DL; Jia Z
    J Mol Biol; 2010 Mar; 397(1):316-31. PubMed ID: 20080101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The three-dimensional structures of the Mycobacterium tuberculosis dihydrodipicolinate reductase-NADH-2,6-PDC and -NADPH-2,6-PDC complexes. Structural and mutagenic analysis of relaxed nucleotide specificity.
    Cirilli M; Zheng R; Scapin G; Blanchard JS
    Biochemistry; 2003 Sep; 42(36):10644-50. PubMed ID: 12962488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal structure of rat biliverdin reductase.
    Kikuchi A; Park SY; Miyatake H; Sun D; Sato M; Yoshida T; Shiro Y
    Nat Struct Biol; 2001 Mar; 8(3):221-5. PubMed ID: 11224565
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectroscopic and kinetic properties of a recombinant form of the flavin domain of spinach NADH: nitrate reductase.
    Quinn GB; Trimboli AJ; Prosser IM; Barber MJ
    Arch Biochem Biophys; 1996 Mar; 327(1):151-60. PubMed ID: 8615685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A structural model for FOXRED1, an FAD-dependent oxidoreductase necessary for NADH: Ubiquinone oxidoreductase (complex I) assembly.
    Lemire BD
    Mitochondrion; 2015 May; 22():9-16. PubMed ID: 25765152
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Common themes and variations in the rhodanese superfamily.
    Cipollone R; Ascenzi P; Visca P
    IUBMB Life; 2007 Feb; 59(2):51-9. PubMed ID: 17454295
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystal structures of two aromatic hydroxylases involved in the early tailoring steps of angucycline biosynthesis.
    Koskiniemi H; Metsä-Ketelä M; Dobritzsch D; Kallio P; Korhonen H; Mäntsälä P; Schneider G; Niemi J
    J Mol Biol; 2007 Sep; 372(3):633-48. PubMed ID: 17669423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.