BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

823 related articles for article (PubMed ID: 21090818)

  • 41. Trapping conformational intermediate states in the reaction center protein from photosynthetic bacteria.
    Xu Q; Gunner MR
    Biochemistry; 2001 Mar; 40(10):3232-41. PubMed ID: 11258940
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparing the temperature dependence of photosynthetic electron transfer in Chloroflexus aurantiacus and Rhodobactor sphaeroides reaction centers.
    Guo Z; Lin S; Xin Y; Wang H; Blankenship RE; Woodbury NW
    J Phys Chem B; 2011 Sep; 115(38):11230-8. PubMed ID: 21827152
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Light-induced structural changes in photosynthetic reaction centres studied by ESEEM of spin-correlated D+QA- radical pairs.
    Borovykh IV; Dzuba SA; Proskuryakov II; Gast P; Hoff AJ
    Biochim Biophys Acta; 1998 Mar; 1363(3):182-6. PubMed ID: 9518602
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vibrational spectroscopy favors a unique QB binding site at the proximal position in wild-type reaction centers and in the Pro-L209 --> Tyr mutant from Rhodobacter sphaeroides.
    Breton J; Boullais C; Mioskowski C; Sebban P; Baciou L; Nabedryk E
    Biochemistry; 2002 Oct; 41(43):12921-7. PubMed ID: 12390017
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electron-transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state: evidence for light-induced structural changes.
    Kleinfeld D; Okamura MY; Feher G
    Biochemistry; 1984 Nov; 23(24):5780-6. PubMed ID: 6395882
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Asymmetric binding of the primary acceptor quinone in reaction centers of the photosynthetic bacterium Rhodobacter sphaeroides R26, probed with Q-band (35 GHz) EPR spectroscopy.
    van den Brink JS; Spoyalov AP; Gast P; van Liemt WB; Raap J; Lugtenburg J; Hoff AJ
    FEBS Lett; 1994 Oct; 353(3):273-6. PubMed ID: 7957873
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The accumulation of the light-harvesting 2 complex during remodeling of the Rhodobacter sphaeroides intracytoplasmic membrane results in a slowing of the electron transfer turnover rate of photochemical reaction centers.
    Woronowicz K; Sha D; Frese RN; Niederman RA
    Biochemistry; 2011 Jun; 50(22):4819-29. PubMed ID: 21366273
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Femtosecond charge separation in dry films of reaction centers of Rhodobacter sphaeroides and Chloroflexus aurantiacus.
    Yakovlev AG; Khmelnitsky AY; Shuvalov VA
    Biochemistry (Mosc); 2012 May; 77(5):444-55. PubMed ID: 22813585
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bacteriochlorophyll excited-state quenching pathways in bacterial reaction centers with the primary donor oxidized.
    Pan J; Lin S; Woodbury NW
    J Phys Chem B; 2012 Feb; 116(6):2014-22. PubMed ID: 22229638
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Redox potential of the non-heme iron complex in bacterial photosynthetic reaction center.
    Ishikita H; Galstyan A; Knapp EW
    Biochim Biophys Acta; 2007 Nov; 1767(11):1300-9. PubMed ID: 17936717
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cumulant analysis of charge recombination kinetics in bacterial reaction centers reconstituted into lipid vesicles.
    Palazzo G; Mallardi A; Giustini M; Berti D; Venturoli G
    Biophys J; 2000 Sep; 79(3):1171-9. PubMed ID: 10968981
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein-cofactor interactions in bacterial reaction centers from Rhodobacter sphaeroides R-26: II. Geometry of the hydrogen bonds to the primary quinone formula by 1H and 2H ENDOR spectroscopy.
    Flores M; Isaacson R; Abresch E; Calvo R; Lubitz W; Feher G
    Biophys J; 2007 Jan; 92(2):671-82. PubMed ID: 17071655
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Time-resolved infrared spectroscopy of electron transfer in bacterial photosynthetic reaction centers: dynamics of binding and interaction upon QA and QB reduction.
    Hienerwadel R; Thibodeau D; Lenz F; Nabedryk E; Breton J; Kreutz W; Mäntele W
    Biochemistry; 1992 Jun; 31(25):5799-808. PubMed ID: 1610825
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Light-induced conformational changes in photosynthetic reaction centers: redox-regulated proton pathway near the dimer.
    Deshmukh SS; Williams JC; Allen JP; Kálmán L
    Biochemistry; 2011 Apr; 50(16):3321-31. PubMed ID: 21410139
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electron paramagnetic resonance studies of zinc-substituted reaction centers from Rhodopseudomonas viridis.
    Gardiner AT; Zech SG; MacMillan F; Käss H; Bittl R; Schlodder E; Lendzian F; Lubitz W
    Biochemistry; 1999 Sep; 38(36):11773-87. PubMed ID: 10512634
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reduction and protonation of the secondary quinone acceptor of Rhodobacter sphaeroides photosynthetic reaction center: kinetic model based on a comparison of wild-type chromatophores with mutants carrying Arg-->Ile substitution at sites 207 and 217 in the L-subunit.
    Cherepanov DA; Bibikov SI; Bibikova MV; Bloch DA; Drachev LA; Gopta OA; Oesterhelt D; Semenov AY; Mulkidjanian AY
    Biochim Biophys Acta; 2000 Jul; 1459(1):10-34. PubMed ID: 10924896
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of dehydration on light-induced conformational changes in bacterial photosynthetic reaction centers probed by optical and differential FTIR spectroscopy.
    Malferrari M; Mezzetti A; Francia F; Venturoli G
    Biochim Biophys Acta; 2013 Mar; 1827(3):328-39. PubMed ID: 23103449
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Charge separation in Rhodobacter sphaeroides mutant reaction centers with increased midpoint potential of the primary electron donor.
    Khmelnitskiy AY; Khatypov RA; Khristin AM; Leonova MM; Vasilieva LG; Shuvalov VA
    Biochemistry (Mosc); 2013 Jan; 78(1):60-7. PubMed ID: 23379560
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conformational control of the Q(A) to Q(B) electron transfer in bacterial reaction centers: evidence for a frozen conformational landscape below -25 degrees C.
    Ginet N; Lavergne J
    J Am Chem Soc; 2008 Jul; 130(29):9318-31. PubMed ID: 18588291
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vibrational coherence in bacterial reaction centers with genetically modified B-branch pigment composition.
    Yakovlev AG; Shkuropatova TA; Vasilieva LG; Shkuropatov AY; Gast P; Shuvalov VA
    Biochim Biophys Acta; 2006; 1757(5-6):369-79. PubMed ID: 16829225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 42.