These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 21091749)

  • 1. The discrete Weibull distribution: an alternative for correlated counts with confirmation for microbial counts in water.
    Englehardt JD; Li R
    Risk Anal; 2011 Mar; 31(3):370-81. PubMed ID: 21091749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new theoretical discrete growth distribution with verification for microbial counts in water.
    Englehardt J; Swartout J; Loewenstine C
    Risk Anal; 2009 Jun; 29(6):841-56. PubMed ID: 19187482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for assessing long-term mean pathogen count in drinking water and risk management implications.
    Englehardt JD; Ashbolt NJ; Loewenstine C; Gadzinski ER; Ayenu-Prah AY
    J Water Health; 2012 Jun; 10(2):197-208. PubMed ID: 22717745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Count data distributions and their zero-modified equivalents as a framework for modelling microbial data with a relatively high occurrence of zero counts.
    Gonzales-Barron U; Kerr M; Sheridan JJ; Butler F
    Int J Food Microbiol; 2010 Jan; 136(3):268-77. PubMed ID: 19913934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical evaluation of mathematical models for microbial growth.
    López S; Prieto M; Dijkstra J; Dhanoa MS; France J
    Int J Food Microbiol; 2004 Nov; 96(3):289-300. PubMed ID: 15454319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the survival of Salmonella spp. in chorizos.
    Hajmeer M; Basheer I; Hew C; Cliver DO
    Int J Food Microbiol; 2006 Mar; 107(1):59-67. PubMed ID: 16303199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collision prediction models using multivariate Poisson-lognormal regression.
    El-Basyouny K; Sayed T
    Accid Anal Prev; 2009 Jul; 41(4):820-8. PubMed ID: 19540972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of the randomly fluctuating microbial counts in foods and water using the Expanded Fermi Solution as a model.
    Peleg M; Normand MD; Corradini MG
    J Food Sci; 2012 Jan; 77(1):R63-71. PubMed ID: 22122407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heritability, reliability of genetic evaluations and response to selection in proportional hazard models.
    Yazdi MH; Visscher PM; Ducrocq V; Thompson R
    J Dairy Sci; 2002 Jun; 85(6):1563-77. PubMed ID: 12146489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On modeling and simulating transitions between microbial growth and inactivation or vice versa.
    Corradini MG; Peleg M
    Int J Food Microbiol; 2006 Apr; 108(1):22-35. PubMed ID: 16403587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A quantile count model of water depth constraints on Cape Sable seaside sparrows.
    Cade BS; Dong Q
    J Anim Ecol; 2008 Jan; 77(1):47-56. PubMed ID: 17976184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling individual cell lag time distributions for Listeria monocytogenes.
    Standaert AR; Francois K; Devlieghere F; Debevere J; Van Impe JF; Geeraerd AH
    Risk Anal; 2007 Feb; 27(1):241-54. PubMed ID: 17362412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of environmental parameters (temperature, pH and a(w)) on the individual cell lag phase and generation time of Listeria monocytogenes.
    Francois K; Devlieghere F; Standaert AR; Geeraerd AH; Van Impe JF; Debevere J
    Int J Food Microbiol; 2006 May; 108(3):326-35. PubMed ID: 16488043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the performance of logistic regression model types on growth/no growth data of Listeria monocytogenes.
    Gysemans KP; Bernaerts K; Vermeulen A; Geeraerd AH; Debevere J; Devlieghere F; Van Impe JF
    Int J Food Microbiol; 2007 Mar; 114(3):316-31. PubMed ID: 17239980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive model of Vibrio parahaemolyticus growth and survival on salmon meat as a function of temperature.
    Yang ZQ; Jiao XA; Li P; Pan ZM; Huang JL; Gu RX; Fang WM; Chao GX
    Food Microbiol; 2009 Sep; 26(6):606-14. PubMed ID: 19527836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of microbial contamination of a water reservoir.
    Engel R; Normand M; Horowitz J; Peleg M
    Bull Math Biol; 2001 Nov; 63(6):1005-23. PubMed ID: 11732173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the volume of red blood cells: application of the expectation-maximization algorithm to grouped data from the doubly-truncated lognormal distribution.
    McLaren CE; Brittenham GM; Hasselblad V
    Biometrics; 1986 Mar; 42(1):143-58. PubMed ID: 3719051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On estimating the probability of aperiodic outbursts of microbial populations from their fluctuating counts.
    Peleg M; Horowitz J
    Bull Math Biol; 2000 Jan; 62(1):17-35. PubMed ID: 10824419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QMRA for Drinking Water: 2. The Effect of Pathogen Clustering in Single-Hit Dose-Response Models.
    Nilsen V; Wyller J
    Risk Anal; 2016 Jan; 36(1):163-81. PubMed ID: 26812258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the effect of temperature and water activity on the growth of two ochratoxigenic strains of Aspergillus carbonarius from Greek wine grapes.
    Tassou CC; Panagou EZ; Natskoulis P; Magan N
    J Appl Microbiol; 2007 Dec; 103(6):2267-76. PubMed ID: 18045410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.