BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 21091804)

  • 1. Neuromuscular recruitment related to stimulus presentation and task instruction during the anti-saccade task.
    Chapman BB; Corneil BD
    Eur J Neurosci; 2011 Jan; 33(2):349-60. PubMed ID: 21091804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recruitment of a head-turning synergy by low-frequency activity in the primate superior colliculus.
    Rezvani S; Corneil BD
    J Neurophysiol; 2008 Jul; 100(1):397-411. PubMed ID: 18497351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deficits in saccadic eye-movement control in Parkinson's disease.
    Chan F; Armstrong IT; Pari G; Riopelle RJ; Munoz DP
    Neuropsychologia; 2005; 43(5):784-96. PubMed ID: 15721191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity in the superior colliculus reflects dynamic interactions between voluntary and involuntary influences on orienting behaviour.
    Bell AH; Munoz DP
    Eur J Neurosci; 2008 Oct; 28(8):1654-60. PubMed ID: 18691327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dorsal neck muscle vibration induces upward shifts in the endpoints of memory-guided saccades in monkeys.
    Corneil BD; Andersen RA
    J Neurophysiol; 2004 Jul; 92(1):553-66. PubMed ID: 14999054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rule-dependent activity for prosaccades and antisaccades in the primate prefrontal cortex.
    Everling S; DeSouza JF
    J Cogn Neurosci; 2005 Sep; 17(9):1483-96. PubMed ID: 16197701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccade reaction times are influenced by caudate microstimulation following and prior to visual stimulus appearance.
    Watanabe M; Munoz DP
    J Cogn Neurosci; 2011 Jul; 23(7):1794-807. PubMed ID: 20666599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Context-dependent stimulation effects on saccade initiation in the presupplementary motor area of the monkey.
    Isoda M
    J Neurophysiol; 2005 May; 93(5):3016-22. PubMed ID: 15703225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the control of arm movement during body motion as revealed by EMG analyses.
    Blouin J; Guillaud E; Bresciani JP; Guerraz M; Simoneau M
    Brain Res; 2010 Jan; 1309():40-52. PubMed ID: 19883633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of prefrontal cue-, delay-, and response-period activity to the decision process of saccade direction in a free-choice ODR task.
    Watanabe K; Igaki S; Funahashi S
    Neural Netw; 2006 Oct; 19(8):1203-22. PubMed ID: 16942859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered control of visual fixation and saccadic eye movements in attention-deficit hyperactivity disorder.
    Munoz DP; Armstrong IT; Hampton KA; Moore KD
    J Neurophysiol; 2003 Jul; 90(1):503-14. PubMed ID: 12672781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonhuman primate event-related potentials associated with pro- and anti-saccades.
    Sander V; Soper B; Everling S
    Neuroimage; 2010 Jan; 49(2):1650-8. PubMed ID: 19782142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of saccade inhibition processes: rapid event-related fMRI of saccades and nogo trials.
    Brown MR; Vilis T; Everling S
    Neuroimage; 2008 Jan; 39(2):793-804. PubMed ID: 17977025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strength of figure-ground activity in monkey primary visual cortex predicts saccadic reaction time in a delayed detection task.
    Supèr H; Lamme VA
    Cereb Cortex; 2007 Jun; 17(6):1468-75. PubMed ID: 16920884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-duration stimulation of the supplementary eye fields perturbs anti-saccade performance while potentiating contralateral head orienting.
    Chapman BB; Corneil BD
    Eur J Neurosci; 2014 Jan; 39(2):295-307. PubMed ID: 24417515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antisaccade performance predicted by neuronal activity in the supplementary eye field.
    Schlag-Rey M; Amador N; Sanchez H; Schlag J
    Nature; 1997 Nov; 390(6658):398-401. PubMed ID: 9389478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparatory set associated with pro-saccades and anti-saccades in humans investigated with event-related FMRI.
    DeSouza JF; Menon RS; Everling S
    J Neurophysiol; 2003 Feb; 89(2):1016-23. PubMed ID: 12574477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Priming of head premotor circuits during oculomotor preparation.
    Corneil BD; Munoz DP; Olivier E
    J Neurophysiol; 2007 Jan; 97(1):701-14. PubMed ID: 17079344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reflexive, symbolic, and affective contributions to eye movements during task switching: response selection.
    Hodgson TL; Golding C; Molyva D; Rosenthal CR; Kennard C
    J Cogn Neurosci; 2004 Mar; 16(2):318-30. PubMed ID: 15068600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related trends in saccade characteristics among the elderly.
    Peltsch A; Hemraj A; Garcia A; Munoz DP
    Neurobiol Aging; 2011 Apr; 32(4):669-79. PubMed ID: 19414208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.