BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 21092124)

  • 1. Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress.
    Dubey S; Misra P; Dwivedi S; Chatterjee S; Bag SK; Mantri S; Asif MH; Rai A; Kumar S; Shri M; Tripathi P; Tripathi RD; Trivedi PK; Chakrabarty D; Tuli R
    BMC Genomics; 2010 Nov; 11():648. PubMed ID: 21092124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.).
    Zhou Y; Yang P; Cui F; Zhang F; Luo X; Xie J
    PLoS One; 2016; 11(1):e0146242. PubMed ID: 26752408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metals induce oxidative stress and genome-wide modulation in transcriptome of rice root.
    Dubey S; Shri M; Misra P; Lakhwani D; Bag SK; Asif MH; Trivedi PK; Tripathi RD; Chakrabarty D
    Funct Integr Genomics; 2014 Jun; 14(2):401-17. PubMed ID: 24553786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and molecular changes in rice seedlings (Oryza sativa L.) to cope with chromium stress.
    Kabir AH
    Plant Biol (Stuttg); 2016 Jul; 18(4):710-9. PubMed ID: 26804776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation Network of Sucrose Metabolism in Response to Trivalent and Hexavalent Chromium in
    Feng YX; Yu XZ; Mo CH; Lu CJ
    J Agric Food Chem; 2019 Sep; 67(35):9738-9748. PubMed ID: 31411877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential expression of the PAL gene family in rice seedlings exposed to chromium by microarray analysis.
    Yu XZ; Fan WJ; Lin YJ; Zhang FF; Gupta DK
    Ecotoxicology; 2018 Apr; 27(3):325-335. PubMed ID: 29404866
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chromium stress response effect on signal transduction and expression of signaling genes in rice.
    Trinh NN; Huang TL; Chi WC; Fu SF; Chen CC; Huang HJ
    Physiol Plant; 2014 Feb; 150(2):205-24. PubMed ID: 24033343
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long- and short-term protective responses of rice seedling to combat Cr(VI) toxicity.
    Dubey S; Gupta A; Khare A; Jain G; Bose S; Rani V
    Environ Sci Pollut Res Int; 2018 Dec; 25(36):36163-36172. PubMed ID: 30362036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mathematical quantification of interactive complexity of transcription factors involved in proline-mediated regulative strategies in Oryza sativa under chromium stress.
    Zhang Q; Feng YX; Lin YJ; Yu XZ
    Plant Physiol Biochem; 2022 Jul; 182():36-44. PubMed ID: 35460933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial transcriptomes of iron-deficient and cadmium-stressed rice.
    Ogo Y; Kakei Y; Itai RN; Kobayashi T; Nakanishi H; Takahashi H; Nakazono M; Nishizawa NK
    New Phytol; 2014 Feb; 201(3):781-794. PubMed ID: 24188410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZINC-INDUCED FACILITATOR-LIKE family in plants: lineage-specific expansion in monocotyledons and conserved genomic and expression features among rice (Oryza sativa) paralogs.
    Ricachenevsky FK; Sperotto RA; Menguer PK; Sperb ER; Lopes KL; Fett JP
    BMC Plant Biol; 2011 Jan; 11():20. PubMed ID: 21266036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatio-temporal dynamics in global rice gene expression (Oryza sativa L.) in response to high ammonium stress.
    Sun L; Di D; Li G; Kronzucker HJ; Shi W
    J Plant Physiol; 2017 May; 212():94-104. PubMed ID: 28282528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulphur alters chromium (VI) toxicity in Solanum melongena seedlings: Role of sulphur assimilation and sulphur-containing antioxidants.
    Singh M; Kushwaha BK; Singh S; Kumar V; Singh VP; Prasad SM
    Plant Physiol Biochem; 2017 Mar; 112():183-192. PubMed ID: 28088020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of early transcriptome responses to copper and cadmium in rice roots.
    Lin CY; Trinh NN; Fu SF; Hsiung YC; Chia LC; Lin CW; Huang HJ
    Plant Mol Biol; 2013 Mar; 81(4-5):507-22. PubMed ID: 23400832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional profiling of the PDR gene family in rice roots in response to plant growth regulators, redox perturbations and weak organic acid stresses.
    Moons A
    Planta; 2008 Dec; 229(1):53-71. PubMed ID: 18830621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycinebetaine: a versatile protectant to improve rice performance against aluminium stress by regulating aluminium uptake and translocation.
    Zhang T; Zhang W; Li D; Zhou F; Chen X; Li C; Yu S; Brestic M; Liu Y; Yang X
    Plant Cell Rep; 2021 Dec; 40(12):2397-2407. PubMed ID: 34524480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic analysis of cytochrome P450 genes and pathways involved in chromium toxicity in Oryza sativa.
    Yu XZ; Lu CJ; Tang S; Zhang Q
    Ecotoxicology; 2020 Jul; 29(5):503-513. PubMed ID: 31119592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Root transcriptomes of two acidic soil adapted Indica rice genotypes suggest diverse and complex mechanism of low phosphorus tolerance.
    Tyagi W; Rai M
    Protoplasma; 2017 Mar; 254(2):725-736. PubMed ID: 27228993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo Transcriptome Assembly of Common Wild Rice (Oryza rufipogon Griff.) and Discovery of Drought-Response Genes in Root Tissue Based on Transcriptomic Data.
    Tian XJ; Long Y; Wang J; Zhang JW; Wang YY; Li WM; Peng YF; Yuan QH; Pei XW
    PLoS One; 2015; 10(7):e0131455. PubMed ID: 26134138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and proteomic alterations in rice (Oryza sativa L.) seedlings under hexavalent chromium stress.
    Zeng F; Wu X; Qiu B; Wu F; Jiang L; Zhang G
    Planta; 2014 Aug; 240(2):291-308. PubMed ID: 24819712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.