These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 21092198)

  • 1. The use of communal rearing of families and DNA pooling in aquaculture genomic selection schemes.
    Sonesson AK; Meuwissen TH; Goddard ME
    Genet Sel Evol; 2010 Nov; 42(1):41. PubMed ID: 21092198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A low-marker density implementation of genomic selection in aquaculture using within-family genomic breeding values.
    Lillehammer M; Meuwissen TH; Sonesson AK
    Genet Sel Evol; 2013 Oct; 45(1):39. PubMed ID: 24127852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies for implementing genomic selection in family-based aquaculture breeding schemes: double haploid sib test populations.
    Nirea KG; Sonesson AK; Woolliams JA; Meuwissen TH
    Genet Sel Evol; 2012 Oct; 44(1):30. PubMed ID: 23110512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identity-by-descent genomic selection using selective and sparse genotyping.
    Odegård J; Meuwissen TH
    Genet Sel Evol; 2014 Jan; 46(1):3. PubMed ID: 24444432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimum contribution selection using traditional best linear unbiased prediction and genomic breeding values in aquaculture breeding schemes.
    Nielsen HM; Sonesson AK; Meuwissen TH
    J Anim Sci; 2011 Mar; 89(3):630-8. PubMed ID: 21036937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mating structures for genomic selection breeding programs in aquaculture.
    Sonesson AK; Ødegård J
    Genet Sel Evol; 2016 Jun; 48(1):46. PubMed ID: 27342705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy of genome-wide evaluation for disease resistance in aquaculture breeding programs.
    Villanueva B; Fernández J; García-Cortés LA; Varona L; Daetwyler HD; Toro MA
    J Anim Sci; 2011 Nov; 89(11):3433-42. PubMed ID: 21742941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of genomic within-family selection in aquaculture breeding programmes.
    Toro MA; Saura M; Fernandez J; Villanueva B
    J Anim Breed Genet; 2017 Jun; 134(3):256-263. PubMed ID: 28508478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Testing strategies for genomic selection in aquaculture breeding programs.
    Sonesson AK; Meuwissen TH
    Genet Sel Evol; 2009 Jun; 41(1):37. PubMed ID: 19566932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Within-family marker-assisted selection for aquaculture species.
    Sonesson AK
    Genet Sel Evol; 2007; 39(3):301-17. PubMed ID: 17433243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genotype Imputation To Improve the Cost-Efficiency of Genomic Selection in Farmed Atlantic Salmon.
    Tsai HY; Matika O; Edwards SM; Antolín-Sánchez R; Hamilton A; Guy DR; Tinch AE; Gharbi K; Stear MJ; Taggart JB; Bron JE; Hickey JM; Houston RD
    G3 (Bethesda); 2017 Apr; 7(4):1377-1383. PubMed ID: 28250015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal strategies for the use of genomic selection in dairy cattle breeding programs.
    Wensch-Dorendorf M; Yin T; Swalve HH; König S
    J Dairy Sci; 2011 Aug; 94(8):4140-51. PubMed ID: 21787949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of selection index calculations to determine selection strategies in genomic breeding programs.
    König S; Swalve HH
    J Dairy Sci; 2009 Oct; 92(10):5292-303. PubMed ID: 19762847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Economic aspects of implementing genomic evaluations in a pig sire line breeding scheme.
    Tribout T; Larzul C; Phocas F
    Genet Sel Evol; 2013 Oct; 45(1):40. PubMed ID: 24127883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identity-by-descent genomic selection using selective and sparse genotyping for binary traits.
    Ødegård J; Meuwissen TH
    Genet Sel Evol; 2015 Feb; 47(1):8. PubMed ID: 25888522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimised parent selection and minimum inbreeding mating in small aquaculture breeding schemes: a simulation study.
    Hely FS; Amer PR; Walker SP; Symonds JE
    Animal; 2013 Jan; 7(1):1-10. PubMed ID: 23031385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy of genomic selection for a sib-evaluated trait using identity-by-state and identity-by-descent relationships.
    Vela-Avitúa S; Meuwissen TH; Luan T; Ødegård J
    Genet Sel Evol; 2015 Feb; 47(1):9. PubMed ID: 25888184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimum mating designs for exploiting dominance in genomic selection schemes for aquaculture species.
    Fernández J; Villanueva B; Toro MA
    Genet Sel Evol; 2021 Feb; 53(1):14. PubMed ID: 33568069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and economic evaluation of Japanese Black (Wagyu) cattle breeding schemes.
    Kahi AK; Hirooka H
    J Anim Sci; 2005 Sep; 83(9):2021-32. PubMed ID: 16100056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of Genome Editing to Improve Aquaculture Breeding and Production.
    Gratacap RL; Wargelius A; Edvardsen RB; Houston RD
    Trends Genet; 2019 Sep; 35(9):672-684. PubMed ID: 31331664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.