BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 21092312)

  • 1. Development and analysis of an in vivo-compatible metabolic network of Mycobacterium tuberculosis.
    Fang X; Wallqvist A; Reifman J
    BMC Syst Biol; 2010 Nov; 4():160. PubMed ID: 21092312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential producibility analysis (DPA) of transcriptomic data with metabolic networks: deconstructing the metabolic response of M. tuberculosis.
    Bonde BK; Beste DJ; Laing E; Kierzek AM; McFadden J
    PLoS Comput Biol; 2011 Jun; 7(6):e1002060. PubMed ID: 21738454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systems-based approaches to probing metabolic variation within the Mycobacterium tuberculosis complex.
    Lofthouse EK; Wheeler PR; Beste DJ; Khatri BL; Wu H; Mendum TA; Kierzek AM; McFadden J
    PLoS One; 2013; 8(9):e75913. PubMed ID: 24098743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism.
    Beste DJ; Hooper T; Stewart G; Bonde B; Avignone-Rossa C; Bushell ME; Wheeler P; Klamt S; Kierzek AM; McFadden J
    Genome Biol; 2007; 8(5):R89. PubMed ID: 17521419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the role of interactions between host and Mycobacterium tuberculosis under hypoxic condition: an in silico approach.
    Bose T; Das C; Dutta A; Mahamkali V; Sadhu S; Mande SS
    BMC Genomics; 2018 Jul; 19(1):555. PubMed ID: 30053801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the Metabolic State of
    Rienksma RA; Schaap PJ; Martins Dos Santos VAP; Suarez-Diez M
    Front Cell Infect Microbiol; 2018; 8():264. PubMed ID: 30123778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systems biology-based identification of Mycobacterium tuberculosis persistence genes in mouse lungs.
    Dutta NK; Bandyopadhyay N; Veeramani B; Lamichhane G; Karakousis PC; Bader JS
    mBio; 2014 Feb; 5(1):. PubMed ID: 24549847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets.
    Rienksma RA; Suarez-Diez M; Spina L; Schaap PJ; Martins dos Santos VA
    Semin Immunol; 2014 Dec; 26(6):610-22. PubMed ID: 25453232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions.
    Bordbar A; Lewis NE; Schellenberger J; Palsson BØ; Jamshidi N
    Mol Syst Biol; 2010 Oct; 6():422. PubMed ID: 20959820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A systems biology framework for modeling metabolic enzyme inhibition of Mycobacterium tuberculosis.
    Fang X; Wallqvist A; Reifman J
    BMC Syst Biol; 2009 Sep; 3():92. PubMed ID: 19754970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets.
    Jamshidi N; Palsson BØ
    BMC Syst Biol; 2007 Jun; 1():26. PubMed ID: 17555602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling phenotypic metabolic adaptations of Mycobacterium tuberculosis H37Rv under hypoxia.
    Fang X; Wallqvist A; Reifman J
    PLoS Comput Biol; 2012; 8(9):e1002688. PubMed ID: 23028286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Responses of Mycobacterium tuberculosis hemoglobin promoters to in vitro and in vivo growth conditions.
    Pawaria S; Lama A; Raje M; Dikshit KL
    Appl Environ Microbiol; 2008 Jun; 74(11):3512-22. PubMed ID: 18390674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chewing the fat: lipid metabolism and homeostasis during M. tuberculosis infection.
    Lovewell RR; Sassetti CM; VanderVen BC
    Curr Opin Microbiol; 2016 Feb; 29():30-6. PubMed ID: 26544033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale Model of Mycobacterium tuberculosis Infection Maps Metabolite and Gene Perturbations to Granuloma Sterilization Predictions.
    Pienaar E; Matern WM; Linderman JJ; Bader JS; Kirschner DE
    Infect Immun; 2016 May; 84(5):1650-1669. PubMed ID: 26975995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systems level mapping of metabolic complexity in Mycobacterium tuberculosis to identify high-value drug targets.
    Vashisht R; Bhat AG; Kushwaha S; Bhardwaj A; ; Brahmachari SK
    J Transl Med; 2014 Oct; 12():263. PubMed ID: 25304862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mycobacterium tuberculosis metabolism and host interaction: mysteries and paradoxes.
    Ehrt S; Rhee K
    Curr Top Microbiol Immunol; 2013; 374():163-88. PubMed ID: 23242856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systems perspective of host-pathogen interactions: predicting disease outcome in tuberculosis.
    Raman K; Bhat AG; Chandra N
    Mol Biosyst; 2010 Mar; 6(3):516-30. PubMed ID: 20174680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon flux rerouting during Mycobacterium tuberculosis growth arrest.
    Shi L; Sohaskey CD; Pheiffer C; Datta P; Parks M; McFadden J; North RJ; Gennaro ML
    Mol Microbiol; 2010 Dec; 78(5):1199-215. PubMed ID: 21091505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling Host-Pathogen Interaction to Elucidate the Metabolic Drug Response of Intracellular
    Rienksma RA; Schaap PJ; Martins Dos Santos VAP; Suarez-Diez M
    Front Cell Infect Microbiol; 2019; 9():144. PubMed ID: 31139575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.