These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 21092314)

  • 41. Species Tree Inference Using a Mixture Model.
    Ullah I; Parviainen P; Lagergren J
    Mol Biol Evol; 2015 Sep; 32(9):2469-82. PubMed ID: 25963975
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A hybrid micro-macroevolutionary approach to gene tree reconstruction.
    Durand D; Halldórsson BV; Vernot B
    J Comput Biol; 2006 Mar; 13(2):320-35. PubMed ID: 16597243
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Statistical inconsistency of the unrooted minimize deep coalescence criterion.
    Alanzi AAR; Degnan JH
    PLoS One; 2021; 16(5):e0251107. PubMed ID: 33970931
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Counting and sampling gene family evolutionary histories in the duplication-loss and duplication-loss-transfer models.
    Chauve C; Ponty Y; Wallner M
    J Math Biol; 2020 Apr; 80(5):1353-1388. PubMed ID: 32060618
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inferring Pareto-optimal reconciliations across multiple event costs under the duplication-loss-coalescence model.
    Mawhorter R; Liu N; Libeskind-Hadas R; Wu YC
    BMC Bioinformatics; 2019 Dec; 20(Suppl 20):639. PubMed ID: 31842732
    [TBL] [Abstract][Full Text] [Related]  

  • 46. GATC: a genetic algorithm for gene tree construction under the Duplication-Transfer-Loss model of evolution.
    Noutahi E; El-Mabrouk N
    BMC Genomics; 2018 May; 19(Suppl 2):102. PubMed ID: 29764363
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inference of Ancient Whole-Genome Duplications and the Evolution of Gene Duplication and Loss Rates.
    Zwaenepoel A; Van de Peer Y
    Mol Biol Evol; 2019 Jul; 36(7):1384-1404. PubMed ID: 31004147
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Unconstrained Diameters of the Duplication-Loss Cost and the Loss Cost.
    Gorecki P; Eulenstein O; Tiuryn J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2125-2135. PubMed ID: 31150345
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inferring species trees from incongruent multi-copy gene trees using the Robinson-Foulds distance.
    Chaudhary R; Burleigh JG; Fernández-Baca D
    Algorithms Mol Biol; 2013 Nov; 8(1):28. PubMed ID: 24180377
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inferring incomplete lineage sorting, duplications, transfers and losses with reconciliations.
    Chan YB; Ranwez V; Scornavacca C
    J Theor Biol; 2017 Nov; 432():1-13. PubMed ID: 28801222
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genome-scale phylogenetics: inferring the plant tree of life from 18,896 gene trees.
    Burleigh JG; Bansal MS; Eulenstein O; Hartmann S; Wehe A; Vision TJ
    Syst Biol; 2011 Mar; 60(2):117-25. PubMed ID: 21186249
    [TBL] [Abstract][Full Text] [Related]  

  • 52. TreeKO: a duplication-aware algorithm for the comparison of phylogenetic trees.
    Marcet-Houben M; Gabaldón T
    Nucleic Acids Res; 2011 May; 39(10):e66. PubMed ID: 21335609
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Locating large-scale gene duplication events through reconciled trees: implications for identifying ancient polyploidy events in plants.
    Burleigh JG; Bansal MS; Wehe A; Eulenstein O
    J Comput Biol; 2009 Aug; 16(8):1071-83. PubMed ID: 19689214
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reconciling gene and genome duplication events: using multiple nuclear gene families to infer the phylogeny of the aquatic plant family Pontederiaceae.
    Ness RW; Graham SW; Barrett SC
    Mol Biol Evol; 2011 Nov; 28(11):3009-18. PubMed ID: 21633114
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient algorithms for reconciling gene trees and species networks via duplication and loss events.
    To TH; Scornavacca C
    BMC Genomics; 2015; 16 Suppl 10(Suppl 10):S6. PubMed ID: 26449687
    [TBL] [Abstract][Full Text] [Related]  

  • 56. TREEasy: An automated workflow to infer gene trees, species trees, and phylogenetic networks from multilocus data.
    Mao Y; Hou S; Shi J; Economo EP
    Mol Ecol Resour; 2020 May; 20(3):. PubMed ID: 32073732
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reconciling event-labeled gene trees with MUL-trees and species networks.
    Hellmuth M; Huber KT; Moulton V
    J Math Biol; 2019 Oct; 79(5):1885-1925. PubMed ID: 31410552
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gene trees and species trees: irreconcilable differences.
    Swenson KM; El-Mabrouk N
    BMC Bioinformatics; 2012; 13 Suppl 19(Suppl 19):S15. PubMed ID: 23281654
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On the computational complexity of the maximum parsimony reconciliation problem in the duplication-loss-coalescence model.
    Bork D; Cheng R; Wang J; Sung J; Libeskind-Hadas R
    Algorithms Mol Biol; 2017; 12():6. PubMed ID: 28316640
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Forcing external constraints on tree inference using ASTRAL.
    Rabiee M; Mirarab S
    BMC Genomics; 2020 Apr; 21(Suppl 2):218. PubMed ID: 32299337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.