These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 21092863)

  • 1. Visual deprivation suppresses L5 pyramidal neuron excitability by preventing the induction of intrinsic plasticity.
    Nataraj K; Le Roux N; Nahmani M; Lefort S; Turrigiano G
    Neuron; 2010 Nov; 68(4):750-62. PubMed ID: 21092863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic and intrinsic homeostatic mechanisms cooperate to increase L2/3 pyramidal neuron excitability during a late phase of critical period plasticity.
    Lambo ME; Turrigiano GG
    J Neurosci; 2013 May; 33(20):8810-9. PubMed ID: 23678123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional and temporal specificity of intrinsic plasticity mechanisms in rodent primary visual cortex.
    Nataraj K; Turrigiano G
    J Neurosci; 2011 Dec; 31(49):17932-40. PubMed ID: 22159108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical period for inhibitory plasticity in rodent binocular V1.
    Maffei A; Lambo ME; Turrigiano GG
    J Neurosci; 2010 Mar; 30(9):3304-9. PubMed ID: 20203190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term potentiation of intrinsic excitability in LV visual cortical neurons.
    Cudmore RH; Turrigiano GG
    J Neurophysiol; 2004 Jul; 92(1):341-8. PubMed ID: 14973317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-Term Visual Training Increases Visual Acuity and Long-Term Monocular Deprivation Promotes Ocular Dominance Plasticity in Adult Standard Cage-Raised Mice.
    Hosang L; Yusifov R; Löwel S
    eNeuro; 2018; 5(1):. PubMed ID: 29379877
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of plasticity in vivo and in vitro in the developing visual cortex of normal and protein kinase A RIbeta-deficient mice.
    Hensch TK; Gordon JA; Brandon EP; McKnight GS; Idzerda RL; Stryker MP
    J Neurosci; 1998 Mar; 18(6):2108-17. PubMed ID: 9482797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-Term Depression of Intrinsic Excitability Accompanied by Synaptic Depression in Cerebellar Purkinje Cells.
    Shim HG; Jang DC; Lee J; Chung G; Lee S; Kim YG; Jeon DE; Kim SJ
    J Neurosci; 2017 Jun; 37(23):5659-5669. PubMed ID: 28495974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple modes of network homeostasis in visual cortical layer 2/3.
    Maffei A; Turrigiano GG
    J Neurosci; 2008 Apr; 28(17):4377-84. PubMed ID: 18434516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentiation of cortical inhibition by visual deprivation.
    Maffei A; Nataraj K; Nelson SB; Turrigiano GG
    Nature; 2006 Sep; 443(7107):81-4. PubMed ID: 16929304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monocular visual deprivation suppresses excitability in adult human visual cortex.
    Lou AR; Madsen KH; Paulson OB; Julian HO; Prause JU; Siebner HR; Kjaer TW
    Cereb Cortex; 2011 Dec; 21(12):2876-82. PubMed ID: 21531780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A switch from inter-ocular to inter-hemispheric suppression following monocular deprivation in the rat visual cortex.
    Pietrasanta M; Restani L; Cerri C; Olcese U; Medini P; Caleo M
    Eur J Neurosci; 2014 Jul; 40(1):2283-92. PubMed ID: 24689940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equalization of ocular dominance columns induced by an activity-dependent learning rule and the maturation of inhibition.
    Toyoizumi T; Miller KD
    J Neurosci; 2009 May; 29(20):6514-25. PubMed ID: 19458222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation.
    Heynen AJ; Yoon BJ; Liu CH; Chung HJ; Huganir RL; Bear MF
    Nat Neurosci; 2003 Aug; 6(8):854-62. PubMed ID: 12886226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation.
    Maffei A; Nelson SB; Turrigiano GG
    Nat Neurosci; 2004 Dec; 7(12):1353-9. PubMed ID: 15543139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deprivation-induced strengthening of presynaptic and postsynaptic inhibitory transmission in layer 4 of visual cortex during the critical period.
    Nahmani M; Turrigiano GG
    J Neurosci; 2014 Feb; 34(7):2571-82. PubMed ID: 24523547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monocular deprivation induces dendritic spine elimination in the developing mouse visual cortex.
    Zhou Y; Lai B; Gan WB
    Sci Rep; 2017 Jul; 7(1):4977. PubMed ID: 28694464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of vision by monocular deprivation in adult mice.
    Prusky GT; Alam NM; Douglas RM
    J Neurosci; 2006 Nov; 26(45):11554-61. PubMed ID: 17093076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recovery from effects of brief monocular deprivation in the kitten.
    Malach R; Ebert R; Van Sluyters RC
    J Neurophysiol; 1984 Mar; 51(3):538-51. PubMed ID: 6699677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.