These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 21092865)

  • 21. Processing of visual signals for direct specification of motor targets and for conceptual representation of action targets in the dorsal and ventral premotor cortex.
    Yamagata T; Nakayama Y; Tanji J; Hoshi E
    J Neurophysiol; 2009 Dec; 102(6):3280-94. PubMed ID: 19793880
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcranial magnetic stimulation over human dorsal-lateral posterior parietal cortex disrupts integration of hand position signals into the reach plan.
    Vesia M; Yan X; Henriques DY; Sergio LE; Crawford JD
    J Neurophysiol; 2008 Oct; 100(4):2005-14. PubMed ID: 18684904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensory-motor and cognitive functions of the human posterior parietal cortex involved in manual actions.
    Creem-Regehr SH
    Neurobiol Learn Mem; 2009 Feb; 91(2):166-71. PubMed ID: 18996216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gaze-centered spatial updating of reach targets across different memory delays.
    Fiehler K; Schütz I; Henriques DY
    Vision Res; 2011 Apr; 51(8):890-7. PubMed ID: 21219923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterogeneous representations in the superior parietal lobule are common across reaches to visual and proprioceptive targets.
    McGuire LM; Sabes PN
    J Neurosci; 2011 May; 31(18):6661-73. PubMed ID: 21543595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A key region in the human parietal cortex for processing proprioceptive hand feedback during reaching movements.
    Reichenbach A; Thielscher A; Peer A; Bülthoff HH; Bresciani JP
    Neuroimage; 2014 Jan; 84():615-25. PubMed ID: 24060316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integration of target and effector information in human posterior parietal cortex for the planning of action.
    Medendorp WP; Goltz HC; Crawford JD; Vilis T
    J Neurophysiol; 2005 Feb; 93(2):954-62. PubMed ID: 15356184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Idiosyncratic and systematic aspects of spatial representations in the macaque parietal cortex.
    Chang SW; Snyder LH
    Proc Natl Acad Sci U S A; 2010 Apr; 107(17):7951-6. PubMed ID: 20375282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reorganization of oscillatory activity in human parietal cortex during spatial updating.
    Van Der Werf J; Buchholz VN; Jensen O; Medendorp WP
    Cereb Cortex; 2013 Mar; 23(3):508-19. PubMed ID: 22414770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple representation of reaching space in the medial posterior parietal area V6A.
    Bosco A; Breveglieri R; Reser D; Galletti C; Fattori P
    Cereb Cortex; 2015 Jun; 25(6):1654-67. PubMed ID: 24421176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Repetition suppression dissociates spatial frames of reference in human saccade generation.
    Van Pelt S; Toni I; Diedrichsen J; Medendorp WP
    J Neurophysiol; 2010 Sep; 104(3):1239-48. PubMed ID: 20592124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Eye-centered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus.
    Mullette-Gillman OA; Cohen YE; Groh JM
    J Neurophysiol; 2005 Oct; 94(4):2331-52. PubMed ID: 15843485
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple parietal reach regions in humans: cortical representations for visual and proprioceptive feedback during on-line reaching.
    Filimon F; Nelson JD; Huang RS; Sereno MI
    J Neurosci; 2009 Mar; 29(9):2961-71. PubMed ID: 19261891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiple movement representations in the human brain: an event-related fMRI study.
    Toni I; Shah NJ; Fink GR; Thoenissen D; Passingham RE; Zilles K
    J Cogn Neurosci; 2002 Jul; 14(5):769-84. PubMed ID: 12167261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The neural basis of selection-for-action.
    Chapman H; Pierno AC; Cunnington R; Gavrilescu M; Egan G; Castiello U
    Neurosci Lett; 2007 May; 417(2):171-5. PubMed ID: 17412509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Parietal cortex coding of limb posture: in search of the body-schema.
    Parkinson A; Condon L; Jackson SR
    Neuropsychologia; 2010 Sep; 48(11):3228-34. PubMed ID: 20619279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional organization of inferior parietal lobule convexity in the macaque monkey: electrophysiological characterization of motor, sensory and mirror responses and their correlation with cytoarchitectonic areas.
    Rozzi S; Ferrari PF; Bonini L; Rizzolatti G; Fogassi L
    Eur J Neurosci; 2008 Oct; 28(8):1569-88. PubMed ID: 18691325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effector movement triggers gaze-dependent spatial coding of tactile and proprioceptive-tactile reach targets.
    Mueller S; Fiehler K
    Neuropsychologia; 2014 Sep; 62():184-93. PubMed ID: 25084225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integration of target and effector information in the human brain during reach planning.
    Beurze SM; de Lange FP; Toni I; Medendorp WP
    J Neurophysiol; 2007 Jan; 97(1):188-99. PubMed ID: 16928798
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Implementation of visuospatial cues in response selection.
    van Eimeren T; Wolbers T; Münchau A; Büchel C; Weiller C; Siebner HR
    Neuroimage; 2006 Jan; 29(1):286-94. PubMed ID: 16087350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.