These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21092901)

  • 21. Monitoring gas-phase CO
    Moriaux AL; Vallon R; Parvitte B; Zeninari V; Liger-Belair G; Cilindre C
    Food Chem; 2018 Oct; 264():255-262. PubMed ID: 29853374
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling nonclassical heterogeneous bubble nucleation from cellulose fibers: application to bubbling in carbonated beverages.
    Liger-Belair G; Voisin C; Jeandet P
    J Phys Chem B; 2005 Aug; 109(30):14573-80. PubMed ID: 16852837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling the kinetics of bubble nucleation in champagne and carbonated beverages.
    Liger-Belair G; Parmentier M; Jeandet P
    J Phys Chem B; 2006 Oct; 110(42):21145-51. PubMed ID: 17048938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GasBench/isotope ratio mass spectrometry: a carbon isotope approach to detect exogenous CO(2) in sparkling drinks.
    Cabañero AI; San-Hipólito T; Rupérez M
    Rapid Commun Mass Spectrom; 2007; 21(20):3323-8. PubMed ID: 17879391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Infrared Laser Sensor for Monitoring Gas-Phase CO
    Lecasse F; Vallon R; Polak F; Cilindre C; Parvitte B; Liger-Belair G; Zéninari V
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unraveling different chemical fingerprints between a champagne wine and its aerosols.
    Liger-Belair G; Cilindre C; Gougeon RD; Lucio M; Gebefügi I; Jeandet P; Schmitt-Kopplin P
    Proc Natl Acad Sci U S A; 2009 Sep; 106(39):16545-9. PubMed ID: 19805335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flow patterns of bubble nucleation sites (called fliers) freely floating in champagne glasses.
    Liger-Belair G; Beaumont F; Jeandet P; Polidori G
    Langmuir; 2007 Oct; 23(22):10976-83. PubMed ID: 17902719
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensory and analytical study of rose sparkling wines manufactured by second fermentation in the bottle.
    Hidalgo P; Pueyo E; Pozo-Bayón MA; Martínez-Rodríguez AJ; Martín-Alvarez P; Polo MC
    J Agric Food Chem; 2004 Oct; 52(21):6640-5. PubMed ID: 15479034
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization by optical measurements of the effects of some stages of champagne technology on the adsorption layer formed at the gas/wine interface.
    Saleh KA; Aguié-Béghin V; Foulon L; Valade M; Douillard R
    Langmuir; 2007 Jun; 23(13):7200-8. PubMed ID: 17503865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical compounds and mechanisms involved in the formation and stabilization of foam in sparkling wines.
    Kemp B; Condé B; Jégou S; Howell K; Vasserot Y; Marchal R
    Crit Rev Food Sci Nutr; 2019; 59(13):2072-2094. PubMed ID: 29420057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phase separation in molecular layers of macromolecules at the champagne-air interface.
    Peron N; Meunier J; Cagna A; Valade M; Douillard R
    J Microsc; 2004 Apr; 214(Pt 1):89-98. PubMed ID: 15049873
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The use of immobilized yeast technology for the production of rose and white sparkling wine from grape varieties of the Zitsa region, in Greece.
    Ntagas P; Tataridis P; Fandos CM; Justamante LE; Nerantzis ET
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt B):515-9. PubMed ID: 24761468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of Production Method on the Chemical Composition, Foaming Properties, and Quality of Australian Carbonated and Sparkling White Wines.
    Culbert JA; McRae JM; Condé BC; Schmidtke LM; Nicholson EL; Smith PA; Howell KS; Boss PK; Wilkinson KL
    J Agric Food Chem; 2017 Feb; 65(7):1378-1386. PubMed ID: 28128557
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Progress in the Analytical Chemistry of Champagne and Sparkling Wines.
    Liger-Belair G; Cilindre C
    Annu Rev Anal Chem (Palo Alto Calif); 2021 Jul; 14(1):21-46. PubMed ID: 34014763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in polysaccharide composition during sparkling wine making and aging.
    Martínez-Lapuente L; Guadalupe Z; Ayestarán B; Ortega-Heras M; Pérez-Magariño S
    J Agric Food Chem; 2013 Dec; 61(50):12362-73. PubMed ID: 24308669
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synergistic effect of high and low molecular weight molecules in the foamability and foam stability of sparkling wines.
    Coelho E; Reis A; Domingues MR; Rocha SM; Coimbra MA
    J Agric Food Chem; 2011 Apr; 59(7):3168-79. PubMed ID: 21375299
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bubble nucleation in stout beers.
    Lee WT; McKechnie JS; Devereux MG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051609. PubMed ID: 21728549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and characterization of a thermally extracted yeast cell wall fraction potentially useful for improving the foaming properties of sparkling wines.
    Núñez YP; Carrascosa AV; Gonzalez R; Polo MC; Martínez-Rodríguez A
    J Agric Food Chem; 2006 Oct; 54(20):7898-903. PubMed ID: 17002468
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of sparkling wine lees surface volatiles by optimized headspace solid-phase microextraction.
    Gallardo-Chacón J; Vichi S; López-Tamames E; Buxaderas S
    J Agric Food Chem; 2009 Apr; 57(8):3279-85. PubMed ID: 19281176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Losses of dissolved CO2 through the cork stopper during Champagne aging: toward a multiparameter modeling.
    Liger-Belair G; Villaume S
    J Agric Food Chem; 2011 Apr; 59(8):4051-6. PubMed ID: 21413811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.