BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 21093414)

  • 21. Snail promotes cell migration through PI3K/AKT-dependent Rac1 activation as well as PI3K/AKT-independent pathways during prostate cancer progression.
    Henderson V; Smith B; Burton LJ; Randle D; Morris M; Odero-Marah VA
    Cell Adh Migr; 2015; 9(4):255-64. PubMed ID: 26207671
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The impact of low-dose carcinogens and environmental disruptors on tissue invasion and metastasis.
    Ochieng J; Nangami GN; Ogunkua O; Miousse IR; Koturbash I; Odero-Marah V; McCawley LJ; Nangia-Makker P; Ahmed N; Luqmani Y; Chen Z; Papagerakis S; Wolf GT; Dong C; Zhou BP; Brown DG; Colacci AM; Hamid RA; Mondello C; Raju J; Ryan EP; Woodrick J; Scovassi AI; Singh N; Vaccari M; Roy R; Forte S; Memeo L; Salem HK; Amedei A; Al-Temaimi R; Al-Mulla F; Bisson WH; Eltom SE
    Carcinogenesis; 2015 Jun; 36 Suppl 1(Suppl 1):S128-59. PubMed ID: 26106135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transforming Growth Factor-Beta and Oxidative Stress Interplay: Implications in Tumorigenesis and Cancer Progression.
    Krstić J; Trivanović D; Mojsilović S; Santibanez JF
    Oxid Med Cell Longev; 2015; 2015():654594. PubMed ID: 26078812
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of the protein stability of EMT transcription factors.
    Díaz VM; Viñas-Castells R; García de Herreros A
    Cell Adh Migr; 2014; 8(4):418-28. PubMed ID: 25482633
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antioxidants maintain E-cadherin levels to limit Drosophila prohemocyte differentiation.
    Gao H; Wu X; Simon L; Fossett N
    PLoS One; 2014; 9(9):e107768. PubMed ID: 25226030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SNAI1 is critical for the aggressiveness of prostate cancer cells with low E-cadherin.
    Deep G; Jain AK; Ramteke A; Ting H; Vijendra KC; Gangar SC; Agarwal C; Agarwal R
    Mol Cancer; 2014 Feb; 13():37. PubMed ID: 24565133
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of epithelial plasticity in prostate cancer dissemination and treatment resistance.
    Bitting RL; Schaeffer D; Somarelli JA; Garcia-Blanco MA; Armstrong AJ
    Cancer Metastasis Rev; 2014 Sep; 33(2-3):441-68. PubMed ID: 24414193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ras and Rac1, frequently mutated in melanomas, are activated by superoxide anion, modulate Dnmt1 level and are causally related to melanocyte malignant transformation.
    Molognoni F; de Melo FH; da Silva CT; Jasiulionis MG
    PLoS One; 2013; 8(12):e81937. PubMed ID: 24358134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting CSCs in tumor microenvironment: the potential role of ROS-associated miRNAs in tumor aggressiveness.
    Bao B; Azmi AS; Li Y; Ahmad A; Ali S; Banerjee S; Kong D; Sarkar FH
    Curr Stem Cell Res Ther; 2014 Jan; 9(1):22-35. PubMed ID: 23957937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Possible role of sonic hedgehog and epithelial-mesenchymal transition in renal cell cancer progression.
    Behnsawy HM; Shigemura K; Meligy FY; Yamamichi F; Yamashita M; Haung WC; Li X; Miyake H; Tanaka K; Kawabata M; Shirakawa T; Fujisawa M
    Korean J Urol; 2013 Aug; 54(8):547-54. PubMed ID: 23956832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Induction of reactive oxygen species generation inhibits epithelial-mesenchymal transition and promotes growth arrest in prostate cancer cells.
    Das TP; Suman S; Damodaran C
    Mol Carcinog; 2014 Jul; 53(7):537-47. PubMed ID: 23475579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reactive oxygen species and tumor metastasis.
    Lee DJ; Kang SW
    Mol Cells; 2013 Feb; 35(2):93-8. PubMed ID: 23456330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The phytoalexin camalexin mediates cytotoxicity towards aggressive prostate cancer cells via reactive oxygen species.
    Smith BA; Neal CL; Chetram M; Vo B; Mezencev R; Hinton C; Odero-Marah VA
    J Nat Med; 2013 Jul; 67(3):607-18. PubMed ID: 23179315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of Snail in prostate cancer.
    Smith BN; Odero-Marah VA
    Cell Adh Migr; 2012; 6(5):433-41. PubMed ID: 23076049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Involvement of O-glycosylation defining oncofetal fibronectin in epithelial-mesenchymal transition process.
    Freire-de-Lima L; Gelfenbeyn K; Ding Y; Mandel U; Clausen H; Handa K; Hakomori SI
    Proc Natl Acad Sci U S A; 2011 Oct; 108(43):17690-5. PubMed ID: 22006308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Transcription factor snail and epithelial-mesenchymal transition of tumor].
    Li L; Wu Z; Zhou Q
    Zhongguo Fei Ai Za Zhi; 2011 Sep; 14(9):749-52. PubMed ID: 21924044
    [No Abstract]   [Full Text] [Related]  

  • 37. Snail-mediated regulation of reactive oxygen species in ARCaP human prostate cancer cells.
    Barnett P; Arnold RS; Mezencev R; Chung LW; Zayzafoon M; Odero-Marah V
    Biochem Biophys Res Commun; 2011 Jan; 404(1):34-9. PubMed ID: 21093414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Muscadine grape skin extract reverts snail-mediated epithelial mesenchymal transition via superoxide species in human prostate cancer cells.
    Burton LJ; Barnett P; Smith B; Arnold RS; Hudson T; Kundu K; Murthy N; Odero-Marah VA
    BMC Complement Altern Med; 2014 Mar; 14():97. PubMed ID: 24617993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting the Nuclear Cathepsin L CCAAT Displacement Protein/Cut Homeobox Transcription Factor-Epithelial Mesenchymal Transition Pathway in Prostate and Breast Cancer Cells with the Z-FY-CHO Inhibitor.
    Burton LJ; Dougan J; Jones J; Smith BN; Randle D; Henderson V; Odero-Marah VA
    Mol Cell Biol; 2017 Mar; 37(5):. PubMed ID: 27956696
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.