These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters. Schumann Burkard G; Jutzi P; Roditi I Mol Biochem Parasitol; 2011 Jan; 175(1):91-4. PubMed ID: 20851719 [TBL] [Abstract][Full Text] [Related]
4. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Wilkinson SR; Taylor MC; Horn D; Kelly JM; Cheeseman I Proc Natl Acad Sci U S A; 2008 Apr; 105(13):5022-7. PubMed ID: 18367671 [TBL] [Abstract][Full Text] [Related]
5. A molecular mechanism for eflornithine resistance in African trypanosomes. Vincent IM; Creek D; Watson DG; Kamleh MA; Woods DJ; Wong PE; Burchmore RJ; Barrett MP PLoS Pathog; 2010 Nov; 6(11):e1001204. PubMed ID: 21124824 [TBL] [Abstract][Full Text] [Related]
6. Drug resistance in human African trypanosomiasis. Barrett MP; Vincent IM; Burchmore RJ; Kazibwe AJ; Matovu E Future Microbiol; 2011 Sep; 6(9):1037-47. PubMed ID: 21958143 [TBL] [Abstract][Full Text] [Related]
8. High-throughput decoding of antitrypanosomal drug efficacy and resistance. Alsford S; Eckert S; Baker N; Glover L; Sanchez-Flores A; Leung KF; Turner DJ; Field MC; Berriman M; Horn D Nature; 2012 Jan; 482(7384):232-6. PubMed ID: 22278056 [TBL] [Abstract][Full Text] [Related]
9. Cross-resistance to nitro drugs and implications for treatment of human African trypanosomiasis. Sokolova AY; Wyllie S; Patterson S; Oza SL; Read KD; Fairlamb AH Antimicrob Agents Chemother; 2010 Jul; 54(7):2893-900. PubMed ID: 20439607 [TBL] [Abstract][Full Text] [Related]
10. Targeting the substrate preference of a type I nitroreductase to develop antitrypanosomal quinone-based prodrugs. Hall BS; Meredith EL; Wilkinson SR Antimicrob Agents Chemother; 2012 Nov; 56(11):5821-30. PubMed ID: 22948871 [TBL] [Abstract][Full Text] [Related]
12. Evaluating 5-nitrofurans as trypanocidal agents. Bot C; Hall BS; Alvarez G; Di Maio R; González M; Cerecetto H; Wilkinson SR Antimicrob Agents Chemother; 2013 Apr; 57(4):1638-47. PubMed ID: 23335745 [TBL] [Abstract][Full Text] [Related]
13. Deletion of the Trypanosoma brucei superoxide dismutase gene sodb1 increases sensitivity to nifurtimox and benznidazole. Prathalingham SR; Wilkinson SR; Horn D; Kelly JM Antimicrob Agents Chemother; 2007 Feb; 51(2):755-8. PubMed ID: 17145786 [TBL] [Abstract][Full Text] [Related]
14. Genetic dissection of drug resistance in trypanosomes. Alsford S; Kelly JM; Baker N; Horn D Parasitology; 2013 Oct; 140(12):1478-91. PubMed ID: 23552488 [TBL] [Abstract][Full Text] [Related]
15. Trypanocidal activity of nitroaromatic prodrugs: current treatments and future perspectives. Wilkinson SR; Bot C; Kelly JM; Hall BS Curr Top Med Chem; 2011; 11(16):2072-84. PubMed ID: 21619510 [TBL] [Abstract][Full Text] [Related]
16. Untargeted metabolomics reveals a lack of synergy between nifurtimox and eflornithine against Trypanosoma brucei. Vincent IM; Creek DJ; Burgess K; Woods DJ; Burchmore RJ; Barrett MP PLoS Negl Trop Dis; 2012; 6(5):e1618. PubMed ID: 22563508 [TBL] [Abstract][Full Text] [Related]
17. Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites. Hall BS; Bot C; Wilkinson SR J Biol Chem; 2011 Apr; 286(15):13088-95. PubMed ID: 21345801 [TBL] [Abstract][Full Text] [Related]
18. Systematic Review and Meta-Analysis on Human African Trypanocide Resistance. Kasozi KI; MacLeod ET; Welburn SC Pathogens; 2022 Sep; 11(10):. PubMed ID: 36297157 [TBL] [Abstract][Full Text] [Related]