BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 21093556)

  • 1. Effects of organic solvents on drug incorporation into polymeric carriers and morphological analyses of drug-incorporated polymeric micelles.
    Harada Y; Yamamoto T; Sakai M; Saiki T; Kawano K; Maitani Y; Yokoyama M
    Int J Pharm; 2011 Feb; 404(1-2):271-80. PubMed ID: 21093556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of camptothecin-loaded polymeric micelles and evaluation of their incorporation and circulation stability.
    Watanabe M; Kawano K; Yokoyama M; Opanasopit P; Okano T; Maitani Y
    Int J Pharm; 2006 Feb; 308(1-2):183-9. PubMed ID: 16324807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What are determining factors for stable drug incorporation into polymeric micelle carriers? Consideration on physical and chemical characters of the micelle inner core.
    Yamamoto T; Yokoyama M; Opanasopit P; Hayama A; Kawano K; Maitani Y
    J Control Release; 2007 Oct; 123(1):11-8. PubMed ID: 17716772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs.
    Sezgin Z; YĆ¼ksel N; Baykara T
    Eur J Pharm Biopharm; 2006 Nov; 64(3):261-8. PubMed ID: 16884896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-phthaloylchitosan-g-mPEG design for all-trans retinoic acid-loaded polymeric micelles.
    Opanasopit P; Ngawhirunpat T; Rojanarata T; Choochottiros C; Chirachanchai S
    Eur J Pharm Sci; 2007 Apr; 30(5):424-31. PubMed ID: 17307343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporation methods for cholic acid chitosan-g-mPEG self-assembly micellar system containing camptothecin.
    Ngawhirunpat T; Wonglertnirant N; Opanasopit P; Ruktanonchai U; Yoksan R; Wasanasuk K; Chirachanchai S
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):253-9. PubMed ID: 19695847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New self-assembling polyaspartylhydrazide copolymer micelles for anticancer drug delivery.
    Licciardi M; Cavallaro G; Di Stefano M; Pitarresi G; Fiorica C; Giammona G
    Int J Pharm; 2010 Aug; 396(1-2):219-28. PubMed ID: 20600731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of camptothecin into N-phthaloyl chitosan-g-mPEG self-assembly micellar system.
    Opanasopit P; Ngawhirunpat T; Chaidedgumjorn A; Rojanarata T; Apirakaramwong A; Phongying S; Choochottiros C; Chirachanchai S
    Eur J Pharm Biopharm; 2006 Nov; 64(3):269-76. PubMed ID: 16870407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One type of novel thermosensitive polymeric micelles.
    Zhao A; Chen T; Zhou Q; Zhou S
    J Control Release; 2011 Nov; 152 Suppl 1():e127-8. PubMed ID: 22195797
    [No Abstract]   [Full Text] [Related]  

  • 10. Anti-tumour and immuno-modulation effects of triptolide-loaded polymeric micelles.
    Xu L; Chen H; Xu H; Yang X
    Eur J Pharm Biopharm; 2008 Nov; 70(3):741-8. PubMed ID: 18761405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly(beta-amino ester) block copolymer micelles for cancer therapy.
    Ko J; Park K; Kim YS; Kim MS; Han JK; Kim K; Park RW; Kim IS; Song HK; Lee DS; Kwon IC
    J Control Release; 2007 Nov; 123(2):109-15. PubMed ID: 17894942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of novel polymeric micelles for 9-nitro-20(S)-camptothecin delivery.
    Gao J; Ming J; He B; Fan Y; Gu Z; Zhang X
    Eur J Pharm Sci; 2008 Jul; 34(2-3):85-93. PubMed ID: 18417323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paclitaxel-loaded polymeric nanoparticles based on PCL-PEG-PCL: preparation, in vitro and in vivo evaluation.
    Zhang L; He Y; Yu M; Song C
    J Control Release; 2011 Nov; 152 Suppl 1():e114-6. PubMed ID: 22195789
    [No Abstract]   [Full Text] [Related]  

  • 14. Polymer design and incorporation methods for polymeric micelle carrier system containing water-insoluble anti-cancer agent camptothecin.
    Yokoyama M; Opanasopit P; Okano T; Kawano K; Maitani Y
    J Drug Target; 2004 Jul; 12(6):373-84. PubMed ID: 15545087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomicelle with long-term circulation and enhanced stability of camptothecin based on mPEGylated alpha,beta-poly (L-aspartic acid)-camptothecin conjugate.
    Zhang W; Huang J; Fan N; Yu J; Liu Y; Liu S; Wang D; Li Y
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):297-303. PubMed ID: 20674289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core-modified chitosan-based polymeric micelles for controlled release of doxorubicin.
    Ye YQ; Yang FL; Hu FQ; Du YZ; Yuan H; Yu HY
    Int J Pharm; 2008 Mar; 352(1-2):294-301. PubMed ID: 18096336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradable water soluble hyperbranched polymers for drug delivery.
    Wang X; Tang J; Sui M; Wang X; Xu J; Shen Y
    J Control Release; 2011 Nov; 152 Suppl 1():e76-8. PubMed ID: 22195940
    [No Abstract]   [Full Text] [Related]  

  • 18. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery.
    Soga O; van Nostrum CF; Fens M; Rijcken CJ; Schiffelers RM; Storm G; Hennink WE
    J Control Release; 2005 Mar; 103(2):341-53. PubMed ID: 15763618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimuli-responsive polypeptide-based reverse micellar hydrogel.
    Dong CM; Chen Y
    J Control Release; 2011 Nov; 152 Suppl 1():e13-4. PubMed ID: 22195800
    [No Abstract]   [Full Text] [Related]  

  • 20. Block copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting.
    Opanasopit P; Yokoyama M; Watanabe M; Kawano K; Maitani Y; Okano T
    Pharm Res; 2004 Nov; 21(11):2001-8. PubMed ID: 15587921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.