These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 21093587)
1. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Arnida ; Janát-Amsbury MM; Ray A; Peterson CM; Ghandehari H Eur J Pharm Biopharm; 2011 Apr; 77(3):417-23. PubMed ID: 21093587 [TBL] [Abstract][Full Text] [Related]
2. Alfranca G; Beola L; Liu Y; Gutiérrez L; Zhang A; Artiga A; Cui D; de la Fuente JM Nanomedicine (Lond); 2019 Dec; 14(23):3035-3055. PubMed ID: 31686580 [No Abstract] [Full Text] [Related]
3. Biodistribution of colloidal gold nanoparticles after intravenous injection: Effects of PEGylation at the same particle size. Takeuchi I; Onaka H; Makino K Biomed Mater Eng; 2018; 29(2):205-215. PubMed ID: 29457594 [TBL] [Abstract][Full Text] [Related]
4. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. ; Malugin A; Ghandehari H J Appl Toxicol; 2010 Apr; 30(3):212-7. PubMed ID: 19902477 [TBL] [Abstract][Full Text] [Related]
5. Critical parameters in the pegylation of gold nanoshells for biomedical applications: an in vitro macrophage study. Kah JC; Wong KY; Neoh KG; Song JH; Fu JW; Mhaisalkar S; Olivo M; Sheppard CJ J Drug Target; 2009 Apr; 17(3):181-93. PubMed ID: 19016072 [TBL] [Abstract][Full Text] [Related]
6. Blood-nanoparticle interactions and in vivo biodistribution: impact of surface PEG and ligand properties. Shah NB; Vercellotti GM; White JG; Fegan A; Wagner CR; Bischof JC Mol Pharm; 2012 Aug; 9(8):2146-55. PubMed ID: 22668197 [TBL] [Abstract][Full Text] [Related]
7. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Zhang G; Yang Z; Lu W; Zhang R; Huang Q; Tian M; Li L; Liang D; Li C Biomaterials; 2009 Apr; 30(10):1928-36. PubMed ID: 19131103 [TBL] [Abstract][Full Text] [Related]
8. Size- and surface chemistry-dependent pharmacokinetics and tumor accumulation of engineered gold nanoparticles after intravenous administration. Wang J; Bai R; Yang R; Liu J; Tang J; Liu Y; Li J; Chai Z; Chen C Metallomics; 2015 Mar; 7(3):516-24. PubMed ID: 25671498 [TBL] [Abstract][Full Text] [Related]
9. Demonstrating approaches to chemically modify the surface of Ag nanoparticles in order to influence their cytotoxicity and biodistribution after single dose acute intravenous administration. Pang C; Brunelli A; Zhu C; Hristozov D; Liu Y; Semenzin E; Wang W; Tao W; Liang J; Marcomini A; Chen C; Zhao B Nanotoxicology; 2016; 10(2):129-39. PubMed ID: 25962681 [TBL] [Abstract][Full Text] [Related]
10. A Systematic comparison of in vitro cell uptake and in vivo biodistribution for three classes of gold nanoparticles with saturated PEG coatings. Zhang Y; Liu AT; Cornejo YR; Van Haute D; Berlin JM PLoS One; 2020; 15(7):e0234916. PubMed ID: 32614882 [TBL] [Abstract][Full Text] [Related]
11. Poly(ethylene glycol)- and carboxylate-functionalized gold nanoparticles using polymer linkages: single-step synthesis, high stability, and plasmonic detection of proteins. Park G; Seo D; Chung IS; Song H Langmuir; 2013 Nov; 29(44):13518-26. PubMed ID: 24090031 [TBL] [Abstract][Full Text] [Related]
12. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Sonavane G; Tomoda K; Makino K Colloids Surf B Biointerfaces; 2008 Oct; 66(2):274-80. PubMed ID: 18722754 [TBL] [Abstract][Full Text] [Related]
13. Modeling gold nanoparticle biodistribution after arterial infusion into perfused tissue: effects of surface coating, size and protein corona. Riviere JE; Jaberi-Douraki M; Lillich J; Azizi T; Joo H; Choi K; Thakkar R; Monteiro-Riviere NA Nanotoxicology; 2018 Dec; 12(10):1093-1112. PubMed ID: 29856247 [TBL] [Abstract][Full Text] [Related]
14. Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. Black KC; Wang Y; Luehmann HP; Cai X; Xing W; Pang B; Zhao Y; Cutler CS; Wang LV; Liu Y; Xia Y ACS Nano; 2014 May; 8(5):4385-94. PubMed ID: 24766522 [TBL] [Abstract][Full Text] [Related]
15. Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery. Terentyuk GS; Maslyakova GN; Suleymanova LV; Khlebtsov BN; Kogan BY; Akchurin GG; Shantrocha AV; Maksimova IL; Khlebtsov NG; Tuchin VV J Biophotonics; 2009 May; 2(5):292-302. PubMed ID: 19434616 [TBL] [Abstract][Full Text] [Related]
16. Pharmacokinetics, clearance, and biosafety of polyethylene glycol-coated hollow gold nanospheres. You J; Zhou J; Zhou M; Liu Y; Robertson JD; Liang D; Van Pelt C; Li C Part Fibre Toxicol; 2014 May; 11():26. PubMed ID: 24886070 [TBL] [Abstract][Full Text] [Related]
17. Effect of the Ligand Binding Strength on the Morphology of Functionalized Gold Nanoparticles. Chan CH; Poignant F; Beuve M; Dumont E; Loffreda D J Phys Chem Lett; 2020 Apr; 11(7):2717-2723. PubMed ID: 32146808 [TBL] [Abstract][Full Text] [Related]
18. Iodine-131 radiolabeling of poly ethylene glycol-coated gold nanorods for in vivo imaging. Eskandari N; Yavari K; Outokesh M; Sadjadi S; Ahmadi SJ J Labelled Comp Radiopharm; 2013 Jan; 56(1):12-6. PubMed ID: 24285135 [TBL] [Abstract][Full Text] [Related]
19. The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice. Akiyama Y; Mori T; Katayama Y; Niidome T J Control Release; 2009 Oct; 139(1):81-4. PubMed ID: 19538994 [TBL] [Abstract][Full Text] [Related]
20. Influences of size and surface coating of gold nanoparticles on inflammatory activation of macrophages. Chen X; Gao C Colloids Surf B Biointerfaces; 2017 Dec; 160():372-380. PubMed ID: 28963958 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]