These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 21093864)
1. Elliptical contact of thin biphasic cartilage layers: exact solution for monotonic loading. Argatov I; Mishuris G J Biomech; 2011 Feb; 44(4):759-61. PubMed ID: 21093864 [TBL] [Abstract][Full Text] [Related]
2. Robust and general method for determining surface fluid flow boundary conditions in articular cartilage contact mechanics modeling. Pawaskar SS; Fisher J; Jin Z J Biomech Eng; 2010 Mar; 132(3):031001. PubMed ID: 20459189 [TBL] [Abstract][Full Text] [Related]
3. Contribution of tissue composition and structure to mechanical response of articular cartilage under different loading geometries and strain rates. Julkunen P; Jurvelin JS; Isaksson H Biomech Model Mechanobiol; 2010 Apr; 9(2):237-45. PubMed ID: 19680701 [TBL] [Abstract][Full Text] [Related]
4. Congruency effects on load bearing in diarthrodial joints. Adeeb SM; Sayed Ahmed EY; Matyas J; Hart DA; Frank CB; Shrive NG Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):147-57. PubMed ID: 15512758 [TBL] [Abstract][Full Text] [Related]
5. Comment on "Hydrostatic pressurization and depletion of trapped lubricant pool during creep contact of a rippled indenter against a biphasic articular cartilage layer". McCutchen CW J Biomech Eng; 2004 Aug; 126(4):536; author reply 537. PubMed ID: 15543874 [No Abstract] [Full Text] [Related]
6. Biphasic surface amorphous layer lubrication of articular cartilage. Graindorge S; Ferrandez W; Jin Z; Ingham E; Grant C; Twigg P; Fisher J Med Eng Phys; 2005 Dec; 27(10):836-44. PubMed ID: 16046176 [TBL] [Abstract][Full Text] [Related]
7. Parametric analysis of the stress distribution on the articular cartilage and subchondral bone. Wang Y; Wei HW; Yu TC; Cheng CK Biomed Mater Eng; 2007; 17(4):241-7. PubMed ID: 17611300 [TBL] [Abstract][Full Text] [Related]
8. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes. Korhonen RK; Julkunen P; Wilson W; Herzog W J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490 [TBL] [Abstract][Full Text] [Related]
9. Letter to the editor commenting on "hydrostatic pressurization and depletion of trapped lubricant pool during creep and sliding contact of a rippled indenter against a biphasic articular cartilage layer.". Mann RW J Biomech Eng; 2004 Aug; 126(4):538; author reply 539. PubMed ID: 15543875 [No Abstract] [Full Text] [Related]
10. A finite element model of an idealized diarthrodial joint to investigate the effects of variation in the mechanical properties of the tissues. Dar FH; Aspden RM Proc Inst Mech Eng H; 2003; 217(5):341-8. PubMed ID: 14558646 [TBL] [Abstract][Full Text] [Related]
11. An asymptotic solution for the contact of two biphasic cartilage layers. Ateshian GA; Lai WM; Zhu WB; Mow VC J Biomech; 1994 Nov; 27(11):1347-60. PubMed ID: 7798285 [TBL] [Abstract][Full Text] [Related]
12. Time and depth dependent Poisson's ratio of cartilage explained by an inhomogeneous orthotropic fiber embedded biphasic model. Chegini S; Ferguson SJ J Biomech; 2010 Jun; 43(9):1660-6. PubMed ID: 20392445 [TBL] [Abstract][Full Text] [Related]
13. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking. Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695 [TBL] [Abstract][Full Text] [Related]
14. Elastic modulus of calcified cartilage is an order of magnitude less than that of subchondral bone. Mente PL; Lewis JL J Orthop Res; 1994 Sep; 12(5):637-47. PubMed ID: 7931780 [TBL] [Abstract][Full Text] [Related]
15. A theoretical solution for the frictionless rolling contact of cylindrical biphasic articular cartilage layers. Ateshian GA; Wang H J Biomech; 1995 Nov; 28(11):1341-55. PubMed ID: 8522547 [TBL] [Abstract][Full Text] [Related]
16. Changes in the deformational behavior of human hip cartilage with age. Armstrong CG; Bahrani AS; Gardner DL J Biomech Eng; 1980 Aug; 102(3):214. PubMed ID: 19530803 [TBL] [Abstract][Full Text] [Related]
17. Compressive properties of mouse articular cartilage determined in a novel micro-indentation test method and biphasic finite element model. Cao L; Youn I; Guilak F; Setton LA J Biomech Eng; 2006 Oct; 128(5):766-71. PubMed ID: 16995764 [TBL] [Abstract][Full Text] [Related]
18. Depth-dependent analysis of the role of collagen fibrils, fixed charges and fluid in the pericellular matrix of articular cartilage on chondrocyte mechanics. Korhonen RK; Herzog W J Biomech; 2008; 41(2):480-5. PubMed ID: 17936762 [TBL] [Abstract][Full Text] [Related]
19. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes. Spilker RL; de Almeida ES; Donzelli PS Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094 [TBL] [Abstract][Full Text] [Related]
20. A linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysis. Lu XL; Wan LQ; Guo XE; Mow VC J Biomech; 2010 Mar; 43(4):673-9. PubMed ID: 19896670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]