These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21093864)

  • 21. Computer simulation of subchondral bone adaptation to mechanical loading in an incongruous joint.
    Jacobs CR; Eckstein F
    Anat Rec; 1997 Nov; 249(3):317-26. PubMed ID: 9372165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulation of orthotropic microstructure remodelling of cancellous bone.
    Kowalczyk P
    J Biomech; 2010 Feb; 43(3):563-9. PubMed ID: 19879580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic behavior of a biphasic cartilage model under cyclic compressive loading.
    Suh JK; Li Z; Woo SL
    J Biomech; 1995 Apr; 28(4):357-64. PubMed ID: 7738045
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of single-phase isotropic elastic and fibril-reinforced poroelastic models for indentation of rabbit articular cartilage.
    Julkunen P; Harjula T; Marjanen J; Helminen HJ; Jurvelin JS
    J Biomech; 2009 Mar; 42(5):652-6. PubMed ID: 19193381
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative studies of human subchondral cancellous bone. Its relationship to the state of its overlying cartilage.
    Pugh JW; Radin EL; Rose RM
    J Bone Joint Surg Am; 1974 Mar; 56(2):313-21. PubMed ID: 4452691
    [No Abstract]   [Full Text] [Related]  

  • 26. [The structure, physiology, and biomechanics of articular cartilage: injury and repair].
    Tatari H
    Acta Orthop Traumatol Turc; 2007; 41 Suppl 2():1-5. PubMed ID: 18180577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Scale and boundary conditions effects on the apparent elastic moduli of trabecular bone modeled as a periodic cellular solid.
    Wang C; Feng L; Jasiuk I
    J Biomech Eng; 2009 Dec; 131(12):121008. PubMed ID: 20524731
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A fast quadrature-based numerical method for the continuous spectrum biphasic poroviscoelastic model of articular cartilage.
    Stuebner M; Haider MA
    J Biomech; 2010 Jun; 43(9):1835-9. PubMed ID: 20211471
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An analytical solution for the radial and tangential displacements on a thin hemispherical layer of articular cartilage.
    Félix Quiñonez A; Summers JL; Fisher J; Jin ZM
    Biomech Model Mechanobiol; 2011 Jun; 10(3):283-93. PubMed ID: 20582612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues.
    Wu JZ; Herzog W; Epstein M
    J Biomech; 1998 Feb; 31(2):165-9. PubMed ID: 9593211
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The use of flat punch indentation to determine the viscoelastic properties in the time and frequency domains of a soft layer bonded to a rigid substrate.
    Cao Y; Ma D; Raabe D
    Acta Biomater; 2009 Jan; 5(1):240-8. PubMed ID: 18722168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of inserting a pressensor film into articular joints on the actual contact mechanics.
    Wu JZ; Herzog W; Epstein M
    J Biomech Eng; 1998 Oct; 120(5):655-9. PubMed ID: 10412445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitrite and nitrotyrosine concentrations in articular cartilage, subchondral bone, and trabecular bone of normal juvenile, normal adult, and osteoarthritic adult equine metacarpophalangeal joints.
    van der Harst M; Bull S; Brama PA; Barneveld AB; van Weeren PR; van de Lest C
    J Rheumatol; 2006 Aug; 33(8):1662-7. PubMed ID: 16881122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Towards an analytical model of soft biological tissues.
    Federico S; Herzog W
    J Biomech; 2008 Dec; 41(16):3309-13. PubMed ID: 18922533
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cyclic loading moves the peak stress to the cartilage surface in a biphasic model with isotropic solid phase properties.
    Warner MD; Taylor WR; Clift SE
    Med Eng Phys; 2004 Apr; 26(3):247-9. PubMed ID: 14984846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of viscoelasticity of collagen fibers in articular cartilage: axial tension versus compression.
    Li LP; Herzog W; Korhonen RK; Jurvelin JS
    Med Eng Phys; 2005 Jan; 27(1):51-7. PubMed ID: 15604004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Equine subchondral bone failure threshold under impact compression applied through articular cartilage.
    Malekipour F; Oetomo D; Lee PV
    J Biomech; 2016 Jul; 49(10):2053-2059. PubMed ID: 27260020
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling axi-symmetrical joint contact with biphasic cartilage layers--an asymptotic solution.
    Wu JZ; Herzog W; Ronsky J
    J Biomech; 1996 Oct; 29(10):1263-81. PubMed ID: 8884472
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A note on an asymptotic solution for the contact of two biphasic cartilage layers in a loaded synovial joint at rest.
    Hlavácek M
    J Biomech; 1999 Sep; 32(9):987-91. PubMed ID: 10460137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A finite element analysis of the indentation stress-relaxation response of linear biphasic articular cartilage.
    Spilker RL; Suh JK; Mow VC
    J Biomech Eng; 1992 May; 114(2):191-201. PubMed ID: 1602762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.