These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 21093907)
1. The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes. Appelman TP; Mizrahi J; Elisseeff JH; Seliktar D Biomaterials; 2011 Feb; 32(6):1508-16. PubMed ID: 21093907 [TBL] [Abstract][Full Text] [Related]
2. The differential effect of scaffold composition and architecture on chondrocyte response to mechanical stimulation. Appelman TP; Mizrahi J; Elisseeff JH; Seliktar D Biomaterials; 2009 Feb; 30(4):518-25. PubMed ID: 19000634 [TBL] [Abstract][Full Text] [Related]
3. Immobilized fibrinogen in PEG hydrogels does not improve chondrocyte-mediated matrix deposition in response to mechanical stimulation. Schmidt O; Mizrahi J; Elisseeff J; Seliktar D Biotechnol Bioeng; 2006 Dec; 95(6):1061-9. PubMed ID: 16921532 [TBL] [Abstract][Full Text] [Related]
4. Collagen mimetic peptide-conjugated photopolymerizable PEG hydrogel. Lee HJ; Lee JS; Chansakul T; Yu C; Elisseeff JH; Yu SM Biomaterials; 2006 Oct; 27(30):5268-76. PubMed ID: 16797067 [TBL] [Abstract][Full Text] [Related]
5. Unique biomaterial compositions direct bone marrow stem cells into specific chondrocytic phenotypes corresponding to the various zones of articular cartilage. Nguyen LH; Kudva AK; Guckert NL; Linse KD; Roy K Biomaterials; 2011 Feb; 32(5):1327-38. PubMed ID: 21067807 [TBL] [Abstract][Full Text] [Related]
6. Mechanical stimulation of TMJ condylar chondrocytes encapsulated in PEG hydrogels. Nicodemus GD; Villanueva I; Bryant SJ J Biomed Mater Res A; 2007 Nov; 83(2):323-31. PubMed ID: 17437304 [TBL] [Abstract][Full Text] [Related]
7. Biosynthetic response of passaged chondrocytes in a type II collagen scaffold to mechanical compression. Lee CR; Grodzinsky AJ; Spector M J Biomed Mater Res A; 2003 Mar; 64(3):560-9. PubMed ID: 12579571 [TBL] [Abstract][Full Text] [Related]
8. Thermoreversible hydrogel scaffolds for articular cartilage engineering. Fisher JP; Jo S; Mikos AG; Reddi AH J Biomed Mater Res A; 2004 Nov; 71(2):268-74. PubMed ID: 15368220 [TBL] [Abstract][Full Text] [Related]
9. Effect of reduced oxygen tension and long-term mechanical stimulation on chondrocyte-polymer constructs. Wernike E; Li Z; Alini M; Grad S Cell Tissue Res; 2008 Feb; 331(2):473-83. PubMed ID: 17957384 [TBL] [Abstract][Full Text] [Related]
10. Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering. Hwang Y; Sangaj N; Varghese S Tissue Eng Part A; 2010 Oct; 16(10):3033-41. PubMed ID: 20486791 [TBL] [Abstract][Full Text] [Related]
11. Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition. Miot S; Woodfield T; Daniels AU; Suetterlin R; Peterschmitt I; Heberer M; van Blitterswijk CA; Riesle J; Martin I Biomaterials; 2005 May; 26(15):2479-89. PubMed ID: 15585250 [TBL] [Abstract][Full Text] [Related]
12. The effect of two different bioreactors on the neocartilage formation in type II collagen modified polyester scaffolds seeded with chondrocytes. Hsu SH; Kuo CC; Yen HJ; Whu SW; Tsai CL Artif Organs; 2005 Jun; 29(6):467-74. PubMed ID: 15926984 [TBL] [Abstract][Full Text] [Related]
13. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. Bryant SJ; Anseth KS; Lee DA; Bader DL J Orthop Res; 2004 Sep; 22(5):1143-9. PubMed ID: 15304291 [TBL] [Abstract][Full Text] [Related]
14. [Chondrogenesis of passaged chondrocytes induced by different dynamic loads in bioreactor]. Wang N; Chen J; Zhang G; Chai W Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Jul; 27(7):786-92. PubMed ID: 24063164 [TBL] [Abstract][Full Text] [Related]
15. Cross-linking density alters early metabolic activities in chondrocytes encapsulated in poly(ethylene glycol) hydrogels and cultured in the rotating wall vessel. Villanueva I; Klement BJ; von Deutsch D; Bryant SJ Biotechnol Bioeng; 2009 Mar; 102(4):1242-50. PubMed ID: 18949761 [TBL] [Abstract][Full Text] [Related]
16. Novel melt-processable chitosan-polybutylene succinate fibre scaffolds for cartilage tissue engineering. Oliveira JT; Crawford A; Mundy JL; Sol PC; Correlo VM; Bhattacharya M; Neves NM; Hatton PV; Reis RL J Biomater Sci Polym Ed; 2011; 22(4-6):773-88. PubMed ID: 20566057 [TBL] [Abstract][Full Text] [Related]
17. In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application. Park JS; Woo DG; Sun BK; Chung HM; Im SJ; Choi YM; Park K; Huh KM; Park KH J Control Release; 2007 Dec; 124(1-2):51-9. PubMed ID: 17904679 [TBL] [Abstract][Full Text] [Related]
18. The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells. Jung Y; Kim SH; Kim YH; Kim SH Biomed Mater; 2009 Oct; 4(5):055009. PubMed ID: 19779251 [TBL] [Abstract][Full Text] [Related]
19. Effect of three-dimensional expansion and cell seeding density on the cartilage-forming capacity of human articular chondrocytes in type II collagen sponges. Francioli SE; Candrian C; Martin K; Heberer M; Martin I; Barbero A J Biomed Mater Res A; 2010 Dec; 95(3):924-31. PubMed ID: 20845491 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous anabolic and catabolic responses of human chondrocytes seeded in collagen hydrogels to long-term continuous dynamic compression. Nebelung S; Gavenis K; Lüring C; Zhou B; Mueller-Rath R; Stoffel M; Tingart M; Rath B Ann Anat; 2012 Jul; 194(4):351-8. PubMed ID: 22429869 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]