These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 21093934)
1. Induction of frond abscission by metals and other toxic compounds in Lemna minor. Henke R; Eberius M; Appenroth KJ Aquat Toxicol; 2011 Jan; 101(1):261-5. PubMed ID: 21093934 [TBL] [Abstract][Full Text] [Related]
2. A novel mechanism of abscission in fronds of Lemna minor L. and the effect of silver ions. Topp C; Henke R; Keresztes A; Fischer W; Eberius M; Appenroth KJ Plant Biol (Stuttg); 2011 May; 13(3):517-23. PubMed ID: 21489103 [TBL] [Abstract][Full Text] [Related]
3. A novel response of wild-type duckweed (Lemna paucicostata Hegelm.) to heavy metals. Li T; Xiong Z Environ Toxicol; 2004 Apr; 19(2):95-102. PubMed ID: 15037994 [TBL] [Abstract][Full Text] [Related]
4. Cadmium-induced colony disintegration of duckweed (Lemna paucicostata Hegelm.) and as biomarker of phytotoxicity. Li TY; Xiong ZT Ecotoxicol Environ Saf; 2004 Oct; 59(2):174-9. PubMed ID: 15327872 [TBL] [Abstract][Full Text] [Related]
5. Growth rate based dose-response relationships and EC-values of ten heavy metals using the duckweed growth inhibition test (ISO 20079) with Lemna minor L. clone St. Naumann B; Eberius M; Appenroth KJ J Plant Physiol; 2007 Dec; 164(12):1656-64. PubMed ID: 17296247 [TBL] [Abstract][Full Text] [Related]
6. Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation. Appenroth KJ; Krech K; Keresztes A; Fischer W; Koloczek H Chemosphere; 2010 Jan; 78(3):216-23. PubMed ID: 19945735 [TBL] [Abstract][Full Text] [Related]
7. Heavy metal toxicity to Lemna minor: studies on the time dependence of growth inhibition and the recovery after exposure. Drost W; Matzke M; Backhaus T Chemosphere; 2007 Feb; 67(1):36-43. PubMed ID: 17157350 [TBL] [Abstract][Full Text] [Related]
8. Comparison of different biological methods for the assessment of ecotoxicological risks. Fenske C; Daeschlein G; Günther B; Knauer A; Rudolph P; Schwahn C; Adrian V; von Woedtke T; Rossberg H; Jülich WD; Kramer A Int J Hyg Environ Health; 2006 May; 209(3):275-84. PubMed ID: 16459144 [TBL] [Abstract][Full Text] [Related]
9. A novel bioassay using root re-growth in Lemna. Park A; Kim YJ; Choi EM; Brown MT; Han T Aquat Toxicol; 2013 Sep; 140-141():415-24. PubMed ID: 23917640 [TBL] [Abstract][Full Text] [Related]
10. Toxicity assessment of heavy metal mixtures by Lemna minor L. Horvat T; Vidaković-Cifrek Z; Orescanin V; Tkalec M; Pevalek-Kozlina B Sci Total Environ; 2007 Oct; 384(1-3):229-38. PubMed ID: 17610935 [TBL] [Abstract][Full Text] [Related]
11. Limitations of growth-parameters in Lemna gibba bioassays for arsenic and uranium under variable phosphate availability. Mkandawire M; Taubert B; Dudel EG Ecotoxicol Environ Saf; 2006 Sep; 65(1):118-28. PubMed ID: 16029890 [TBL] [Abstract][Full Text] [Related]
12. Effects of heavy metals on antioxidants and stress-responsive gene expression in Javanese medaka (Oryzias javanicus). Woo S; Yum S; Park HS; Lee TK; Ryu JC Comp Biochem Physiol C Toxicol Pharmacol; 2009 Apr; 149(3):289-99. PubMed ID: 18760381 [TBL] [Abstract][Full Text] [Related]
13. Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Pomati F; Netting AG; Calamari D; Neilan BA Aquat Toxicol; 2004 May; 67(4):387-96. PubMed ID: 15084414 [TBL] [Abstract][Full Text] [Related]
14. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Megateli S; Semsari S; Couderchet M Ecotoxicol Environ Saf; 2009 Sep; 72(6):1774-80. PubMed ID: 19505721 [TBL] [Abstract][Full Text] [Related]
15. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Miretzky P; Saralegui A; Cirelli AF Chemosphere; 2004 Nov; 57(8):997-1005. PubMed ID: 15488590 [TBL] [Abstract][Full Text] [Related]
16. Metal distributions in Tigriopus brevicornis (Crustacea, Copepoda) exposed to copper, zinc, nickel, cadmium, silver, and mercury, and implication for subsequent transfer in the food web. Barka S; Pavillon JF; Amiard-Triquet C Environ Toxicol; 2010 Aug; 25(4):350-60. PubMed ID: 19449389 [TBL] [Abstract][Full Text] [Related]
17. Effects of the glyphosate active ingredient and a formulation on Lemna gibba L. at different exposure levels and assessment end-points. Sobrero MC; Rimoldi F; Ronco AE Bull Environ Contam Toxicol; 2007 Nov; 79(5):537-43. PubMed ID: 17940715 [TBL] [Abstract][Full Text] [Related]
18. Heavy metal levels and esterase variations between metal-exposed and unexposed duckweed Lemna minor: field and laboratory studies. Mukherjee S; Mukherjee S; Bhattacharyya P; Duttagupta AK Environ Int; 2004 Aug; 30(6):811-4. PubMed ID: 15120200 [TBL] [Abstract][Full Text] [Related]
19. Use of freshwater algae and duckweeds for phytotoxicity testing. Blinova I Environ Toxicol; 2004 Aug; 19(4):425-8. PubMed ID: 15269918 [TBL] [Abstract][Full Text] [Related]
20. Cytotoxicities and induction of metallothionein (MT) and metal regulatory element (MRE)-binding transcription factor-1 (MTF-1) messenger RNA levels in the zebrafish (Danio rerio) ZFL and SJD cell lines after exposure to various metal ions. Cheuk WK; Chan PC; Chan KM Aquat Toxicol; 2008 Aug; 89(2):103-12. PubMed ID: 18639347 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]