BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 21093948)

  • 1. Glyoxylate is a substrate of the sulfate-oxalate exchanger, sat-1, and increases its expression in HepG2 cells.
    Schnedler N; Burckhardt G; Burckhardt BC
    J Hepatol; 2011 Mar; 54(3):513-20. PubMed ID: 21093948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycolate and glyoxylate metabolism in HepG2 cells.
    Baker PR; Cramer SD; Kennedy M; Assimos DG; Holmes RP
    Am J Physiol Cell Physiol; 2004 Nov; 287(5):C1359-65. PubMed ID: 15240345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of the expression of the hepatocellular sulfate-oxalate exchanger SAT-1 (SLC26A1) by glyoxylate: a metabolic link between liver and kidney?
    Stieger B
    J Hepatol; 2011 Mar; 54(3):406-7. PubMed ID: 21084130
    [No Abstract]   [Full Text] [Related]  

  • 4. Absence of the sulfate transporter SAT-1 has no impact on oxalate handling by mouse intestine and does not cause hyperoxaluria or hyperoxalemia.
    Whittamore JM; Stephens CE; Hatch M
    Am J Physiol Gastrointest Liver Physiol; 2019 Jan; 316(1):G82-G94. PubMed ID: 30383413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ability of sat-1 to transport sulfate, bicarbonate, or oxalate under physiological conditions.
    Krick W; Schnedler N; Burckhardt G; Burckhardt BC
    Am J Physiol Renal Physiol; 2009 Jul; 297(1):F145-54. PubMed ID: 19369292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathways of hepatic oxalate synthesis and their regulation.
    Poore RE; Hurst CH; Assimos DG; Holmes RP
    Am J Physiol; 1997 Jan; 272(1 Pt 1):C289-94. PubMed ID: 9038835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In female rats, ethylene glycol treatment elevates protein expression of hepatic and renal oxalate transporter sat-1 (Slc26a1) without inducing hyperoxaluria.
    Breljak D; Brzica H; Vrhovac I; Micek V; Karaica D; Ljubojević M; Sekovanić A; Jurasović J; Rašić D; Peraica M; Lovrić M; Schnedler N; Henjakovic M; Wegner W; Burckhardt G; Burckhardt BC; Sabolić I
    Croat Med J; 2015 Oct; 56(5):447-59. PubMed ID: 26526882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular Cl(-) regulates human SO4 (2-)/anion exchanger SLC26A1 by altering pH sensitivity of anion transport.
    Wu M; Heneghan JF; Vandorpe DH; Escobar LI; Wu BL; Alper SL
    Pflugers Arch; 2016 Aug; 468(8):1311-32. PubMed ID: 27125215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycolate metabolism by Hep G2 cells.
    Holmes RP; Sexton WJ; Applewhite JC; Kennedy M; Assimos DG
    J Am Soc Nephrol; 1999 Nov; 10 Suppl 14():S345-7. PubMed ID: 10541260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunolocalization of sat-1 sulfate/oxalate/bicarbonate anion exchanger in the rat kidney.
    Karniski LP; Lötscher M; Fucentese M; Hilfiker H; Biber J; Murer H
    Am J Physiol; 1998 Jul; 275(1):F79-87. PubMed ID: 9689008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a mammalian brain sulfate transporter.
    Lee A; Beck L; Brown RJ; Markovich D
    Biochem Biophys Res Commun; 1999 Sep; 263(1):123-9. PubMed ID: 10486264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The formation of oxalate from hydroxypyruvate, serine, glycolate and glyoxylate in the rat.
    Gambardella RL; Richardson KE
    Biochim Biophys Acta; 1978 Dec; 544(2):315-28. PubMed ID: 719002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of the sulfate/anion exchanger in the rat liver.
    Quondamatteo F; Krick W; Hagos Y; Krüger MH; Neubauer-Saile K; Herken R; Ramadori G; Burckhardt G; Burckhardt BC
    Am J Physiol Gastrointest Liver Physiol; 2006 May; 290(5):G1075-81. PubMed ID: 16357056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The liver and kidney expression of sulfate anion transporter sat-1 in rats exhibits male-dominant gender differences.
    Brzica H; Breljak D; Krick W; Lovrić M; Burckhardt G; Burckhardt BC; Sabolić I
    Pflugers Arch; 2009 Apr; 457(6):1381-92. PubMed ID: 19002488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The synthesis of oxylate from hydroxypyruvate by isolated perfused rat liver. The mechanism of hyperoxaluria in L-glyceric aciduria.
    Liao LL; Richardson KE
    Biochim Biophys Acta; 1978 Jan; 538(1):76-86. PubMed ID: 620064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxalate synthesis in humans: assumptions, problems, and unresolved issues.
    Holmes RP
    Mol Urol; 2000; 4(4):329-32. PubMed ID: 11156699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interrelationships in rats among dietary vitamin B6, glycine and hydroxyproline. Effects of oxalate, glyoxylate, glycolate, and glycine on liver enzymes.
    Ribaya JD; Gershoff SN
    J Nutr; 1979 Jan; 109(1):171-83. PubMed ID: 430210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxalate synthesis in mammals: properties and subcellular distribution of serine:pyruvate/alanine:glyoxylate aminotransferase in the liver.
    Ichiyama A; Xue HH; Oda T; Uchida C; Sugiyama T; Maeda-Nakai E; Sato K; Nagai E; Watanabe S; Takayama T
    Mol Urol; 2000; 4(4):333-40. PubMed ID: 11156700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systemic Alanine Glyoxylate Aminotransferase mRNA Improves Glyoxylate Metabolism in a Mouse Model of Primary Hyperoxaluria Type 1.
    Kukreja A; Lasaro M; Cobaugh C; Forbes C; Tang JP; Gao X; Martin-Higueras C; Pey AL; Salido E; Sobolov S; Subramanian RR
    Nucleic Acid Ther; 2019 Apr; 29(2):104-113. PubMed ID: 30676254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial hydroxyproline metabolism: implications for primary hyperoxaluria.
    Knight J; Holmes RP
    Am J Nephrol; 2005; 25(2):171-5. PubMed ID: 15849464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.