BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 21094070)

  • 1. Structure and biological importance of the Spn1-Spt6 interaction, and its regulatory role in nucleosome binding.
    McDonald SM; Close D; Xin H; Formosa T; Hill CP
    Mol Cell; 2010 Dec; 40(5):725-35. PubMed ID: 21094070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spn1 and Its Dynamic Interactions with Spt6, Histones and Nucleosomes.
    Li S; Edwards G; Radebaugh CA; Luger K; Stargell LA
    J Mol Biol; 2022 Jul; 434(13):167630. PubMed ID: 35595162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Abundant Histone Chaperones Spt6 and FACT Collaborate to Assemble, Inspect, and Maintain Chromatin Structure in Saccharomyces cerevisiae.
    McCullough L; Connell Z; Petersen C; Formosa T
    Genetics; 2015 Nov; 201(3):1031-45. PubMed ID: 26416482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Casein Kinase II Phosphorylation of Spt6 Enforces Transcriptional Fidelity by Maintaining Spn1-Spt6 Interaction.
    Dronamraju R; Kerschner JL; Peck SA; Hepperla AJ; Adams AT; Hughes KD; Aslam S; Yoblinski AR; Davis IJ; Mosley AL; Strahl BD
    Cell Rep; 2018 Dec; 25(12):3476-3489.e5. PubMed ID: 30566871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Essential histone chaperones collaborate to regulate transcription and chromatin integrity.
    Viktorovskaya O; Chuang J; Jain D; Reim NI; López-Rivera F; Murawska M; Spatt D; Churchman LS; Park PJ; Winston F
    Genes Dev; 2021 May; 35(9-10):698-712. PubMed ID: 33888559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The elongation factor Spn1 is a multi-functional chromatin binding protein.
    Li S; Almeida AR; Radebaugh CA; Zhang L; Chen X; Huang L; Thurston AK; Kalashnikova AA; Hansen JC; Luger K; Stargell LA
    Nucleic Acids Res; 2018 Mar; 46(5):2321-2334. PubMed ID: 29300974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of the S. cerevisiae Spt6 core and C-terminal tandem SH2 domain.
    Close D; Johnson SJ; Sdano MA; McDonald SM; Robinson H; Formosa T; Hill CP
    J Mol Biol; 2011 May; 408(4):697-713. PubMed ID: 21419780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of chromatin structure by spt6: different consequences in coding and regulatory regions.
    Ivanovska I; Jacques PÉ; Rando OJ; Robert F; Winston F
    Mol Cell Biol; 2011 Feb; 31(3):531-41. PubMed ID: 21098123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spt6 Association with RNA Polymerase II Directs mRNA Turnover During Transcription.
    Dronamraju R; Hepperla AJ; Shibata Y; Adams AT; Magnuson T; Davis IJ; Strahl BD
    Mol Cell; 2018 Jun; 70(6):1054-1066.e4. PubMed ID: 29932900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spn1 regulates the recruitment of Spt6 and the Swi/Snf complex during transcriptional activation by RNA polymerase II.
    Zhang L; Fletcher AG; Cheung V; Winston F; Stargell LA
    Mol Cell Biol; 2008 Feb; 28(4):1393-403. PubMed ID: 18086892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription elongation factors repress transcription initiation from cryptic sites.
    Kaplan CD; Laprade L; Winston F
    Science; 2003 Aug; 301(5636):1096-9. PubMed ID: 12934008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction between the Spt6-tSH2 domain and Rpb1 affects multiple functions of RNA Polymerase II.
    Connell Z; Parnell TJ; McCullough LL; Hill CP; Formosa T
    Nucleic Acids Res; 2022 Jan; 50(2):784-802. PubMed ID: 34967414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppressor mutations that make the essential transcription factor Spn1/Iws1 dispensable in Saccharomyces cerevisiae.
    López-Rivera F; Chuang J; Spatt D; Gopalakrishnan R; Winston F
    Genetics; 2022 Sep; 222(2):. PubMed ID: 35977387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The conserved elongation factor Spn1 is required for normal transcription, histone modifications, and splicing in Saccharomyces cerevisiae.
    Reim NI; Chuang J; Jain D; Alver BH; Park PJ; Winston F
    Nucleic Acids Res; 2020 Oct; 48(18):10241-10258. PubMed ID: 32941642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution structure of tandem SH2 domains from Spt6 protein and their binding to the phosphorylated RNA polymerase II C-terminal domain.
    Liu J; Zhang J; Gong Q; Xiong P; Huang H; Wu B; Lu G; Wu J; Shi Y
    J Biol Chem; 2011 Aug; 286(33):29218-29226. PubMed ID: 21676864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperation between intrinsically disordered and ordered regions of Spt6 regulates nucleosome and Pol II CTD binding, and nucleosome assembly.
    Kasiliauskaite A; Kubicek K; Klumpler T; Zanova M; Zapletal D; Koutna E; Novacek J; Stefl R
    Nucleic Acids Res; 2022 Jun; 50(10):5961-5973. PubMed ID: 35640611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A link between Sas2-mediated H4 K16 acetylation, chromatin assembly in S-phase by CAF-I and Asf1, and nucleosome assembly by Spt6 during transcription.
    Reiter C; Heise F; Chung HR; Ehrenhofer-Murray AE
    FEMS Yeast Res; 2015 Nov; 15(7):. PubMed ID: 26260510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insight into the mechanism of nucleosome reorganization from histone mutants that suppress defects in the FACT histone chaperone.
    McCullough L; Rawlins R; Olsen A; Xin H; Stillman DJ; Formosa T
    Genetics; 2011 Aug; 188(4):835-46. PubMed ID: 21625001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence that Spt6p controls chromatin structure by a direct interaction with histones.
    Bortvin A; Winston F
    Science; 1996 Jun; 272(5267):1473-6. PubMed ID: 8633238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and in vivo requirement of the yeast Spt6 SH2 domain.
    Dengl S; Mayer A; Sun M; Cramer P
    J Mol Biol; 2009 May; 389(1):211-25. PubMed ID: 19371747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.