These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 21094188)
1. Environmental noise affects auditory temporal processing development and NMDA-2B receptor expression in auditory cortex. Sun W; Tang L; Allman BL Behav Brain Res; 2011 Mar; 218(1):15-20. PubMed ID: 21094188 [TBL] [Abstract][Full Text] [Related]
2. Environmental enrichment rescues the degraded auditory temporal resolution of cortical neurons induced by early noise exposure. Jiang C; Xu X; Yu L; Xu J; Zhang J Eur J Neurosci; 2015 Sep; 42(5):2144-54. PubMed ID: 26059984 [TBL] [Abstract][Full Text] [Related]
3. NR2B subunit-dependent long-term potentiation enhancement in the rat cortical auditory system in vivo following masking of patterned auditory input by white noise exposure during early postnatal life. Hogsden JL; Dringenberg HC Eur J Neurosci; 2009 Aug; 30(3):376-84. PubMed ID: 19656178 [TBL] [Abstract][Full Text] [Related]
4. Neonatal nicotine exposure impairs development of auditory temporal processing. Sun W; Hansen A; Zhang L; Lu J; Stolzberg D; Kraus KS Hear Res; 2008 Nov; 245(1-2):58-64. PubMed ID: 18801421 [TBL] [Abstract][Full Text] [Related]
5. Environmental acoustic enrichment promotes recovery from developmentally degraded auditory cortical processing. Zhu X; Wang F; Hu H; Sun X; Kilgard MP; Merzenich MM; Zhou X J Neurosci; 2014 Apr; 34(16):5406-15. PubMed ID: 24741032 [TBL] [Abstract][Full Text] [Related]
6. Early auditory enrichment with music enhances auditory discrimination learning and alters NR2B protein expression in rat auditory cortex. Xu J; Yu L; Cai R; Zhang J; Sun X Behav Brain Res; 2009 Jan; 196(1):49-54. PubMed ID: 18706452 [TBL] [Abstract][Full Text] [Related]
7. The gap-startle paradigm for tinnitus screening in animal models: limitations and optimization. Lobarinas E; Hayes SH; Allman BL Hear Res; 2013 Jan; 295(1-2):150-60. PubMed ID: 22728305 [TBL] [Abstract][Full Text] [Related]
8. Auditory discrimination training rescues developmentally degraded directional selectivity and restores mature expression of GABA(A) and AMPA receptor subunits in rat auditory cortex. Guo F; Zhang J; Zhu X; Cai R; Zhou X; Sun X Behav Brain Res; 2012 Apr; 229(2):301-7. PubMed ID: 22306199 [TBL] [Abstract][Full Text] [Related]
9. Early continuous white noise exposure alters auditory spatial sensitivity and expression of GAD65 and GABAA receptor subunits in rat auditory cortex. Xu J; Yu L; Cai R; Zhang J; Sun X Cereb Cortex; 2010 Apr; 20(4):804-12. PubMed ID: 19620619 [TBL] [Abstract][Full Text] [Related]
10. Perceptual Training Restores Impaired Cortical Temporal Processing Due to Lead Exposure. Zhu X; Liu X; Wei F; Wang F; Merzenich MM; Schreiner CE; Sun X; Zhou X Cereb Cortex; 2016 Jan; 26(1):334-345. PubMed ID: 25405943 [TBL] [Abstract][Full Text] [Related]
11. Acoustically Enriched Environment during the Critical Period of Postnatal Development Positively Modulates Gap Detection and Frequency Discrimination Abilities in Adult Rats. Pysanenko K; Rybalko N; Bureš Z; Šuta D; Lindovský J; Syka J Neural Plast; 2021; 2021():6611922. PubMed ID: 33777134 [TBL] [Abstract][Full Text] [Related]
12. Age-related changes in neural gap detection thresholds in the rat auditory cortex. Zhao Y; Xu X; He J; Xu J; Zhang J Eur J Neurosci; 2015 Feb; 41(3):285-92. PubMed ID: 25388865 [TBL] [Abstract][Full Text] [Related]
13. Early postnatal noise exposure degrades the stimulus-specific adaptation of neurons in the rat auditory cortex in adulthood. Wang F; Liu J; Zhang J Neuroscience; 2019 Apr; 404():1-13. PubMed ID: 30742959 [TBL] [Abstract][Full Text] [Related]
14. Temporal processing in inferior colliculus and auditory cortex affected by high doses of salicylate. Deng A; Lu J; Sun W Brain Res; 2010 Jul; 1344():96-103. PubMed ID: 20451503 [TBL] [Abstract][Full Text] [Related]
15. Auditory cortex lesions in the rat impair both temporal acuity and noise increment thresholds, revealing a common neural substrate. Bowen GP; Lin D; Taylor MK; Ison JR Cereb Cortex; 2003 Aug; 13(8):815-22. PubMed ID: 12853367 [TBL] [Abstract][Full Text] [Related]
16. The gap-startle paradigm to assess auditory temporal processing: Bridging animal and human research. Fournier P; Hébert S Psychophysiology; 2016 May; 53(5):759-66. PubMed ID: 26841102 [TBL] [Abstract][Full Text] [Related]
17. Mind the Gap: Two Dissociable Mechanisms of Temporal Processing in the Auditory System. Anderson LA; Linden JF J Neurosci; 2016 Feb; 36(6):1977-95. PubMed ID: 26865621 [TBL] [Abstract][Full Text] [Related]
18. The gap prepulse inhibition of the acoustic startle (GPIAS) paradigm to assess auditory temporal processing: Monaural versus binaural presentation. Fournier P; Hébert S Psychophysiology; 2021 Mar; 58(3):e13755. PubMed ID: 33355931 [TBL] [Abstract][Full Text] [Related]
19. A Layer 3→5 Circuit in Auditory Cortex That Contributes to Pre-pulse Inhibition of the Acoustic Startle Response. Weible AP; Yavorska I; Kayal D; Duckler U; Wehr M Front Neural Circuits; 2020; 14():553208. PubMed ID: 33192336 [TBL] [Abstract][Full Text] [Related]
20. Early continuous white noise exposure alters l-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit glutamate receptor 2 and gamma-aminobutyric acid type a receptor subunit beta3 protein expression in rat auditory cortex. Xu J; Yu L; Zhang J; Cai R; Sun X J Neurosci Res; 2010 Feb; 88(3):614-9. PubMed ID: 19774669 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]