BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

731 related articles for article (PubMed ID: 21094248)

  • 1. Perspectives on microalgal CO₂-emission mitigation systems--a review.
    Ho SH; Chen CY; Lee DJ; Chang JS
    Biotechnol Adv; 2011; 29(2):189-98. PubMed ID: 21094248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review.
    Chen CY; Yeh KL; Aisyah R; Lee DJ; Chang JS
    Bioresour Technol; 2011 Jan; 102(1):71-81. PubMed ID: 20674344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels.
    Yeh KL; Chang JS
    Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances.
    Wilhelm C; Jakob T
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):909-19. PubMed ID: 22005740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closed photobioreactors for production of microalgal biomasses.
    Wang B; Lan CQ; Horsman M
    Biotechnol Adv; 2012; 30(4):904-12. PubMed ID: 22306165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyanobacteria and microalgae: a positive prospect for biofuels.
    Parmar A; Singh NK; Pandey A; Gnansounou E; Madamwar D
    Bioresour Technol; 2011 Nov; 102(22):10163-72. PubMed ID: 21924898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Progress in biofixation of CO2 from combustion flue gas by microalgae].
    Zhang Y; Zhao B; Xiong K; Zhang Z; Hao X; Liu T
    Sheng Wu Gong Cheng Xue Bao; 2011 Feb; 27(2):164-71. PubMed ID: 21650040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light requirements in microalgal photobioreactors: an overview of biophotonic aspects.
    Carvalho AP; Silva SO; Baptista JM; Malcata FX
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1275-88. PubMed ID: 21181149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions.
    Mutanda T; Karthikeyan S; Bux F
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1126-38. PubMed ID: 21347654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Productivity, carbon dioxide uptake and net energy return of microalgal bubble column photobioreactors.
    Hulatt CJ; Thomas DN
    Bioresour Technol; 2011 May; 102(10):5775-87. PubMed ID: 21376576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced CO(2) fixation and biofuel production via microalgae: recent developments and future directions.
    Kumar A; Ergas S; Yuan X; Sahu A; Zhang Q; Dewulf J; Malcata FX; van Langenhove H
    Trends Biotechnol; 2010 Jul; 28(7):371-80. PubMed ID: 20541270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal.
    Min M; Wang L; Li Y; Mohr MJ; Hu B; Zhou W; Chen P; Ruan R
    Appl Biochem Biotechnol; 2011 Sep; 165(1):123-37. PubMed ID: 21494756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: a Review.
    Huang G; Chen F; Kuang Y; He H; Qin A
    Appl Biochem Biotechnol; 2016 Mar; 178(6):1220-38. PubMed ID: 26695777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ.
    Yadav G; Karemore A; Dash SK; Sen R
    Bioresour Technol; 2015 Sep; 191():399-406. PubMed ID: 25921786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of environmental factors on carbon dioxide fixation by microalgae.
    Morales M; Sánchez L; Revah S
    FEMS Microbiol Lett; 2018 Feb; 365(3):. PubMed ID: 29228188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal?
    Acién Fernández FG; González-López CV; Fernández Sevilla JM; Molina Grima E
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):577-86. PubMed ID: 22923096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of microalgal cultivation in a pilot-scale airlift-driven raceway reactor.
    Ketheesan B; Nirmalakhandan N
    Bioresour Technol; 2012 Mar; 108():196-202. PubMed ID: 22277208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures.
    Chiu SY; Kao CY; Huang TT; Lin CJ; Ong SC; Chen CD; Chang JS; Lin CS
    Bioresour Technol; 2011 Oct; 102(19):9135-42. PubMed ID: 21802285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breathable waveguides for combined light and CO2 delivery to microalgae.
    Pierobon SC; Riordon J; Nguyen B; Sinton D
    Bioresour Technol; 2016 Jun; 209():391-6. PubMed ID: 26996260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bicarbonate produced from carbon capture for algae culture.
    Chi Z; O'Fallon JV; Chen S
    Trends Biotechnol; 2011 Nov; 29(11):537-41. PubMed ID: 21775005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.