These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21094478)

  • 1. Measuring the dynamic mechanical response of hydrated mouse bone by nanoindentation.
    Pathak S; Swadener JG; Kalidindi SR; Courtland HW; Jepsen KJ; Goldman HM
    J Mech Behav Biomed Mater; 2011 Jan; 4(1):34-43. PubMed ID: 21094478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Estimations of mechanical properties of bones using nanoindentation].
    Sakamoto M
    Clin Calcium; 2016 Jan; 26(1):81-91. PubMed ID: 26728534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved method for the measurement of mechanical properties of bone by nanoindentation.
    Tang B; Ngan AH; Lu WW
    J Mater Sci Mater Med; 2007 Sep; 18(9):1875-81. PubMed ID: 17522963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Age-specific profiles of tissue-level composition and mechanical properties in murine cortical bone.
    Raghavan M; Sahar ND; Kohn DH; Morris MD
    Bone; 2012 Apr; 50(4):942-53. PubMed ID: 22285889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationships between tissue composition and viscoelastic properties in human trabecular bone.
    Ojanen X; Isaksson H; Töyräs J; Turunen MJ; Malo MK; Halvari A; Jurvelin JS
    J Biomech; 2015 Jan; 48(2):269-75. PubMed ID: 25498367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships of viscosity with contact hardness and modulus of bone matrix measured by nanoindentation.
    Kim DG; Huja SS; Lee HR; Tee BC; Hueni S
    J Biomech Eng; 2010 Feb; 132(2):024502. PubMed ID: 20370248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of lamellar level properties in mouse bone utilizing a novel spherical nanoindentation data analysis method.
    Pathak S; Vachhani SJ; Jepsen KJ; Goldman HM; Kalidindi SR
    J Mech Behav Biomed Mater; 2012 Sep; 13():102-17. PubMed ID: 22842281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fourier transform infrared imaging microspectroscopy and tissue-level mechanical testing reveal intraspecies variation in mouse bone mineral and matrix composition.
    Courtland HW; Nasser P; Goldstone AB; Spevak L; Boskey AL; Jepsen KJ
    Calcif Tissue Int; 2008 Nov; 83(5):342-53. PubMed ID: 18855037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman spectral classification of mineral- and collagen-bound water's associations to elastic and post-yield mechanical properties of cortical bone.
    Unal M; Akkus O
    Bone; 2015 Dec; 81():315-326. PubMed ID: 26211992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic variation in mouse femoral tissue-level mineral content underlies differences in whole bone mechanical properties.
    Courtland HW; Spevak M; Boskey AL; Jepsen KJ
    Cells Tissues Organs; 2009; 189(1-4):237-40. PubMed ID: 18703864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of bone's mechanical matrix properties by nanoindentation.
    Ozcivici E; Ferreri S; Qin YX; Judex S
    Methods Mol Biol; 2008; 455():323-34. PubMed ID: 18463828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct comparison of nanoindentation and macroscopic measurements of bone viscoelasticity.
    Shepherd TN; Zhang J; Ovaert TC; Roeder RK; Niebur GL
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2055-62. PubMed ID: 22098905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insight into differences in nanoindentation properties of bone.
    Rodriguez-Florez N; Oyen ML; Shefelbine SJ
    J Mech Behav Biomed Mater; 2013 Feb; 18():90-9. PubMed ID: 23262307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collagen and bone viscoelasticity: a dynamic mechanical analysis.
    Yamashita J; Li X; Furman BR; Rawls HR; Wang X; Agrawal CM
    J Biomed Mater Res; 2002; 63(1):31-6. PubMed ID: 11787026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An application of nanoindentation technique to measure bone tissue Lamellae properties.
    Hoffler CE; Guo XE; Zysset PK; Goldstein SA
    J Biomech Eng; 2005 Dec; 127(7):1046-53. PubMed ID: 16502646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of mineral to bone structural behavior and tissue mechanical properties.
    Donnelly E; Chen DX; Boskey AL; Baker SP; van der Meulen MC
    Calcif Tissue Int; 2010 Nov; 87(5):450-60. PubMed ID: 20730582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level.
    Katsamenis OL; Jenkins T; Thurner PJ
    Bone; 2015 Jul; 76():158-68. PubMed ID: 25863123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformation partitioning provides insight into elastic, plastic, and viscous contributions to bone material behavior.
    Ferguson VL
    J Mech Behav Biomed Mater; 2009 Aug; 2(4):364-74. PubMed ID: 19627843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accretion of bone quantity and quality in the developing mouse skeleton.
    Miller LM; Little W; Schirmer A; Sheik F; Busa B; Judex S
    J Bone Miner Res; 2007 Jul; 22(7):1037-45. PubMed ID: 17402847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage.
    Taffetani M; Griebel M; Gastaldi D; Klisch SM; Vena P
    J Mech Behav Biomed Mater; 2014 Apr; 32():17-30. PubMed ID: 24389384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.