These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 21094680)

  • 1. A possible role for a paralemniscal auditory pathway in the coding of slow temporal information.
    Abrams DA; Nicol T; Zecker S; Kraus N
    Hear Res; 2011 Feb; 272(1-2):125-34. PubMed ID: 21094680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Auditory Thalamostriatal and Corticostriatal Pathways Convey Complementary Information about Sound Features.
    Ponvert ND; Jaramillo S
    J Neurosci; 2019 Jan; 39(2):271-280. PubMed ID: 30459227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural coding of temporal information in auditory thalamus and cortex.
    Wang X; Lu T; Bendor D; Bartlett E
    Neuroscience; 2008 Nov; 157(2):484-94. PubMed ID: 19143093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural coding of temporal information in auditory thalamus and cortex.
    Wang X; Lu T; Bendor D; Bartlett E
    Neuroscience; 2008 Jun; 154(1):294-303. PubMed ID: 18555164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow oscillation in non-lemniscal auditory thalamus.
    He J
    J Neurosci; 2003 Sep; 23(23):8281-90. PubMed ID: 12967990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corticofugal modulation of the auditory thalamus.
    He J
    Exp Brain Res; 2003 Dec; 153(4):579-90. PubMed ID: 14574430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency selectivity is related to temporal processing in parallel thalamocortical auditory pathways.
    Lennartz RC; Weinberger NM
    Brain Res; 1992 Jun; 583(1-2):81-92. PubMed ID: 1504845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced temporal processing in older, normal-hearing listeners evident from electrophysiological responses to shifts in interaural time difference.
    Ozmeral EJ; Eddins DA; Eddins AC
    J Neurophysiol; 2016 Dec; 116(6):2720-2729. PubMed ID: 27683889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of noise and cue enhancement on neural responses to speech in auditory midbrain, thalamus and cortex.
    Cunningham J; Nicol T; King C; Zecker SG; Kraus N
    Hear Res; 2002 Jul; 169(1-2):97-111. PubMed ID: 12121743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corticofugal gating of auditory information in the thalamus: an in vivo intracellular recording study.
    Yu YQ; Xiong Y; Chan YS; He J
    J Neurosci; 2004 Mar; 24(12):3060-9. PubMed ID: 15044545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal resolution of the human primary auditory cortex in gap detection.
    Rupp A; Gutschalk A; Hack S; Scherg M
    Neuroreport; 2002 Dec; 13(17):2203-7. PubMed ID: 12488797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulatory effect of cortical activation on the lemniscal auditory thalamus of the Guinea pig.
    He J; Yu YQ; Xiong Y; Hashikawa T; Chan YS
    J Neurophysiol; 2002 Aug; 88(2):1040-50. PubMed ID: 12163552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Specific and nonspecific plasticity of the primary auditory cortex elicited by thalamic auditory neurons.
    Ma X; Suga N
    J Neurosci; 2009 Apr; 29(15):4888-96. PubMed ID: 19369557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thalamocortical transformation of responses to complex auditory stimuli.
    Creutzfeldt O; Hellweg FC; Schreiner C
    Exp Brain Res; 1980; 39(1):87-104. PubMed ID: 6247179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional organization of lemniscal and nonlemniscal auditory thalamus.
    Hu B
    Exp Brain Res; 2003 Dec; 153(4):543-9. PubMed ID: 12937877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation from temporal to rate coding in a somatosensory thalamocortical pathway.
    Ahissar E; Sosnik R; Haidarliu S
    Nature; 2000 Jul; 406(6793):302-6. PubMed ID: 10917531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial representation of neural responses to natural and altered conspecific vocalizations in cat auditory cortex.
    Gourévitch B; Eggermont JJ
    J Neurophysiol; 2007 Jan; 97(1):144-58. PubMed ID: 17021022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Population responses in primary auditory cortex simultaneously represent the temporal envelope and periodicity features in natural speech.
    Abrams DA; Nicol T; White-Schwoch T; Zecker S; Kraus N
    Hear Res; 2017 May; 348():31-43. PubMed ID: 28216125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Timing predictability enhances regularity encoding in the human subcortical auditory pathway.
    Gorina-Careta N; Zarnowiec K; Costa-Faidella J; Escera C
    Sci Rep; 2016 Nov; 6():37405. PubMed ID: 27853313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A spike-timing code for discriminating conspecific vocalizations in the thalamocortical system of anesthetized and awake guinea pigs.
    Huetz C; Philibert B; Edeline JM
    J Neurosci; 2009 Jan; 29(2):334-50. PubMed ID: 19144834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.